精英家教网 > 高中数学 > 题目详情
10.如图在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的表面积为(  )
A.8+12$\sqrt{2}$B.16+24$\sqrt{2}$C.$\frac{1}{3}(8+12\sqrt{2})$D.4+6$\sqrt{2}$

分析 由已知中的三视力可得该几何体是一个三棱锥,计算出各个面的面积,相加可得答案.

解答 解:根据几何体的三视图,得;
该几何体是底面为等腰直角三角形的三棱锥P-ABC,
且三棱锥的高PO=2,如图所示:

∴侧面△PAB的面积为S△PAB=$\frac{1}{2}$×4$\sqrt{2}$×2=4$\sqrt{2}$,
△PBC与△PAC的面积为S△PBC=S△PAC=$\frac{1}{2}$×4×$\sqrt{{2}^{2}+{2}^{2}}$=4$\sqrt{2}$,
底面△ABC的面积为S△ABC=$\frac{1}{2}$×4×4=8,
∴三棱锥的体积为S△PAB+S△PAC+S△PBC+S△ABC=8+12$\sqrt{2}$.
故选:A

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足|x-y+2|≤1,|3x-2y|≤3,则|5x+4|的最大值为49.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某四面体的三视图如图所示.该四面体的六条棱中,最大长度是2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),右顶点为A(a,0),过F作x轴的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.,若D到直线BC的距离等于a+c,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量
m(件)与时间t(天)的关系如表所示.
时间t/天1361036
日销售量
m/件
9490847624
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=$\frac{1}{4}$t+25(1≤t≤20,且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系为y2=$\frac{1}{2}$t+40(21≤t≤40,且t为整数).下面我们就来研究销售这种商品的有关问题.
(1)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些 数据的m(件)与t(天)的关系式.
(2)试预测未来40天中哪一天的日销售利润最大,最大利润是多少?
(3)在实际销售的前20天中,该公司决定每销售1件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,则该几何体的体积为$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在直三棱柱ABC-A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正视图的投影面α内,且AB与投影面α所成角为为θ(30°≤θ≤60°),设正视图的面积为m,侧视图的面积为n,当θ变化时,mn的值不可能是(  )
A.$\sqrt{3}$B.4C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z满足$\overline{z}$(1-i)=1+i(i是虚数单位),则z=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(log2x)=ax2-2x+1-a,a∈R.
(1)求f(x)的解析式;
(2)解关于x的方程f(x)=(a-1)•4x

查看答案和解析>>

同步练习册答案