精英家教网 > 高中数学 > 题目详情
20.已知f(log2x)=ax2-2x+1-a,a∈R.
(1)求f(x)的解析式;
(2)解关于x的方程f(x)=(a-1)•4x

分析 (1)由解析式令log2x=t即x=2t,代入解析式化简求出f(t),将t化为x可得f(x)的解析式;
(2)由(1)化简f(x)=(a-1)•4x,根据指数函数的性质分类讨论,分别由指对互化的式子求出x的表达式.

解答 解:(1)令log2x=t即x=2t,则f(t)=a•(2t2-2•2t+1-a
即f(x)=a•22x-2•2x+1-a,x∈R
(2)由f(x)=(a-1)•4x得:a•22x-2•2x+1-a=(a-1)•4x
化简得,22x-2•2x+1-a=0,即(2x-1)2=a,
当a<0时,方程无解;
当a≥0时,解得${2^x}=1±\sqrt{a}$,
所以若0≤a<1,则$x={log_2}(1±\sqrt{a})$,
若a≥1,则$x={log_2}(1+\sqrt{a})$.

点评 本题考查利用换元法求函数的解析式,指对互化、指数函数的性质的应用,考查分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的表面积为(  )
A.8+12$\sqrt{2}$B.16+24$\sqrt{2}$C.$\frac{1}{3}(8+12\sqrt{2})$D.4+6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知三棱柱ABC-A1B1C1的侧面与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N、P分别是CC1、BC、A1B1的中点.
(1)求证:PN⊥AM;
(2)若直线MB与平面PMN所成的角为θ,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A,B,C是双曲线$\frac{x^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$上的三个点,AB过原点,AC经过右焦点F,若BF⊥AC且
|BF|=|CF|,则该双曲线的渐近线方程为y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{{-{2^x}+m}}{{{2^{x+1}}+n}}$(m>0,n>0).
(1)若f(x)是奇函数,求m与n的值;
(2)在(1)的条件下,求不等式$f[{f(x)}]+f(\frac{1}{4})<0$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正三棱柱ABC-A1B1C1底面边长为2,高为$\sqrt{3}$,D为A1B1的中点,建立适当的坐标系,写出A、B,C,D、C1、B1的坐标,并求出CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平行六面体ABCD-A1B1C1D1中,AB=5,AD=3,AA1=7,∠CBA=120°,∠BAA1=∠DAA1=45°,则AC1的长等于(  )
A.83B.$\sqrt{83}$C.98$+56\sqrt{2}$D.$\sqrt{98+56\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某空间几何体的三视图如图所示,则此几何体的体积为(  )
A.10B.15C.20D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆F的方程是$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),它的长轴是短轴的2倍,短轴长和抛物线y2=4x的焦准距相等,在椭圆F上任意取一点P作PQ⊥x轴,垂足是Q,点C在QP的延长线上,且$\overrightarrow{QC}$=2$\overrightarrow{QP}$.
(1)求动点C的轨迹方程E;
(2)若椭圆F的左右顶点是A,B,直线AC(C和A,B不重合)与直线x-2=0交于点R,D为线段BR的中点,判断直线CD与曲线E的位置关系.

查看答案和解析>>

同步练习册答案