精英家教网 > 高中数学 > 题目详情
已知A,B∈(0,
π
2
),且sinAcosB=3cosAsinB,tanA+tanB=7-tanAtanB.
(1)求∠B的值;
(2)求
sinAsinB-cosAcosB
sinAsinB+2cosAcosB
的值.
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:(1)由已知可得tanA=3tanB.又由tanA+tanB=7-tanAtanB得4tanB=7-3tan2B,从而可求B的值;
(2)由(1)得:tanB=1,tanA=3,又由A,B∈(0,
π
2
),即可求值.
解答: 解:(1)∵sinAcosB=3cosAsinB,∴可得tanA=3tanB.
∵tanA+tanB=7-tanAtanB.∴4tanB=7-3tan2B
∴可解得:tanB=1或-
14
6

∵B∈(0,
π
2
),tanB>0
∴tanB=1
∴∠B=
π
4

(2)∵由(1)得:tanB=1,tanA=3
又∵A,B∈(0,
π
2
),
sinAsinB-cosAcosB
sinAsinB+2cosAcosB
=
tanAtanB-1
tanAtanB+2
=
2
5
点评:本题主要考察了同角三角函数基本关系的运用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
2sin(3x+
π
4
)-1
的单调递减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=
1
3
,则tanα+
1
tanα
=(  )
A、
8
9
B、
7
3
C、
9
4
D、
11
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长均相等的正三棱柱ABC-A1B1C1中,D为BC的中点.
(1)求证:A1B∥平面AC1D;
(2)求C1C与平面AC1D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
y2
a2
+
x2
2
=1(a>
2
)的离心率
2
2
,其两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足
PF1
PF2
=1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求椭圆C的方程;
(2)求P点坐标;
(3)当直线PB的斜率为
2
2
时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的终边经过点P(-4cosα,3cosα),α∈{α|π<α<2π,α≠
2
},则sinθ+cosθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
e2
1
3
x
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面是边长为a的正方形,PD⊥底面ABCD,PD=DC,E、F分别是AB、PB的中点,
(1)PB与CD所成的角的正弦值;
(2)DB与平面DEF所成的面的余弦值;
(3)点B到平面DEF的距离;
(4)二面角F-DE-B的大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在双曲线
x2
25
-
y2
9
=1上求一点,使它到直线l:x-y-3=0的距离最短,并求最短距离.

查看答案和解析>>

同步练习册答案