精英家教网 > 高中数学 > 题目详情
如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN∶NE=16∶9.线段MN必须过点P,端点M、N分别在边AD、AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
 
(1)用x的代数式表示AM;
(2)求S关于x的函数关系式及该函数的定义域;
(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?
(1)(10≤x≤30)(2)[10,30](3)9+3m
(1)AM= (10≤x≤30).
(2)MN2=AN2+AM2=x2.
∵MN∶NE=16∶9,∴NE=MN.
∴S=MN·NE=MN2
定义域为[10,30].
(3)S′=
令S′=0,得x=0(舍)或9+3.当10≤x<9+3时,S′<0,S关于x为减函数;当9+3<x≤30时,S′>0,S关于x为增函数.∴当x=9+3时,S取得最小值.
故当AN长为9+3m时,液晶广告屏幕MNEF的面积S最小
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知的图象关于坐标原点对称。
(1)求的值,并求出函数的零点;
(2)若函数在[0,1]内存在零点,求实数b的取值范围;
(3)设,已知的反函数=,若不等式上恒成立,求满足条件的最小整数k的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

判断下列对应是否是从集合A到集合B的函数.
(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],对应法则f:x→y,这里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z∈B.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·.
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

市场营销人员对过去几年某商品的价格及销售数量的关系作数据分析发现有如下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k为正常数).目前该商品定价为每个a元,统计其销售数量为b个.
(1)当k=时,该商品的价格上涨多少,才能使销售的总金额达到最大?
(2)在适当的涨价过程中,求使销售总金额不断增加时k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在自然界中,存在着大量的周期函数,比如声波,若两个声波随时间的变化规律分别为:,则这两个声波合成后即的振幅为(   )
A.3B.C.D.

查看答案和解析>>

同步练习册答案