精英家教网 > 高中数学 > 题目详情
市场营销人员对过去几年某商品的价格及销售数量的关系作数据分析发现有如下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k为正常数).目前该商品定价为每个a元,统计其销售数量为b个.
(1)当k=时,该商品的价格上涨多少,才能使销售的总金额达到最大?
(2)在适当的涨价过程中,求使销售总金额不断增加时k的取值范围.
(1) ab.(2) 0<k<1
由题意,价格上涨x%以后,销售总金额为y=a(1+x%)·b(1-kx%)= [-kx2+100(1-k)x+10000].
(1)当k=时,y= (-x2+50x+10000)= [22500-(x-50)2],
因此当x=50,即价格上涨50%时,y取最大值ab.
(2)y=[-kx2+100(1-k)x+10000],此二次函数的图象开口向下,对称轴为x=.
在适当涨价的过程中,销售总金额不断增加,即要求此函数当自变量x在{x|x>0}的一个子集内增大时,y也增大,因此 >0,解得0<k<1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-4,设曲线yf(x)在点(xnf(xn))
处的切线与x轴的交点为(xn+1,0)(n∈N),其中x1为正实数.
(1)用xn表示xn+1
(2)求证:对一切正整数nxn+1xn的充要条件是x1≥2;
(3)若x1=4,记an=lg ,证明数列{an}成等比数列,并求数列{xn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

菱形ABCD的边长为,沿对角线AC折成如图所示的四面体,二面角B-AC-D为,M为AC的中点,P在线段DM上,记DP=x,PA+PB=y,则函数y=f(x)的图象大致为(    )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设P(x,y)为函数y=x2-1(x>)图象上一动点,记m=,则当m最小时,点P的坐标为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN∶NE=16∶9.线段MN必须过点P,端点M、N分别在边AD、AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
 
(1)用x的代数式表示AM;
(2)求S关于x的函数关系式及该函数的定义域;
(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地方政府在某地建一座桥,两端的桥墩相距m米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩).经预测,一个桥墩的费用为256万元,相邻两个桥墩之间的距离均为x,且相邻两个桥墩之间的桥面工程费用为(1+)x万元,假设所有桥墩都视为点且不考虑其他因素,记工程总费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=1280米时,需要新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,x∈[-1,8],函数g(x)=ax+2,x∈[-1,8],若存在x∈[-1,8],使f(x)=g(x)成立,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(xλ)+λf(x)=0对任意实数都成立,则称f(x)是一个“λ伴随函数”.下列关于“λ伴随函数”的结论:①f(x)=0不是常数函数中唯一一个“λ伴随函数”;②f(x)=x不是“λ伴随函数”;③f(x)=x2是“λ伴随函数”;④“伴随函数”至少有一个零点.其中正确的结论个数是(  )
A.1 B.2C.3 D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若,则的大小关系为___________.

查看答案和解析>>

同步练习册答案