精英家教网 > 高中数学 > 题目详情
不等式|x-2|≤m的解集为{x|-4≤x≤8},又已知a,b,c∈R,且a+2b+3c=m,求a2+4b2+9c2的最小值.
考点:二维形式的柯西不等式,绝对值不等式的解法
专题:选作题,不等式
分析:根据不等式|x-2|≤m的解集为{x|-4≤x≤8},求出m,利用柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化简得a2+4b2+9c2≥12,由此可得a2+4b2+9c2的最小值为12.
解答: 解:不等式|x-2|≤m 的解集为{x|2-m≤x≤2+m},
又不等式|x-2|≤m的解集为{x|-4≤x≤8},所以m=6,
可知a+2b+3c=6,根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]
化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2
∴a2+4b2+9c2≥12,
当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=
2
3
时等号成立
由此可得:当且仅当a=2,b=1,c=
2
3
时,a2+4b2+9c2的最小值为12
点评:本题给出等式a+2b+3c=m,求式子a2+4b2+9c2的最小值.着重考查了运用柯西不等式求最值与柯西不等式的等号成立的条件等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)满足f(x)=1+f(2)•log2x2,则f(4)=(  )
A、-3B、-2C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
3
2
,左顶点M到直线
x
a
+
y
b
=1的距离d=
4
5
5
,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;
(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y-4)2=1,圆C2:(x+1)2+y2=1.
(1)求过点A(4,6)的圆C1的切线l的方程;
(2)已知圆C3:(x+1)2+y2=9,动圆M半径为1,圆心M在圆C3上移动,过圆M上任意一点P作圆C2的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围;
(3)若动圆Q同时平分圆C1的周长、圆C2的周长,求圆心Q的轨迹方程,并判断
动圆Q是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列方程的曲线不关于x轴对称的是(  )
A、x2-x+y2=1
B、x2y+xy2=1
C、2x2-y2=1
D、x+y2=-1

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的一点,若△PAD为等边三角形,求证:PB⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆台的两底面半径分别是5cm和10cm,高为8cm,有一个过圆台两母线的截面沮上、下底面中心到截面与两底面的交线的距离分别为3cm和6cm,求截面面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=
3
sinx+cosx对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题P(n)对n=3成立,且由P(k)成立可以推证P(k+2)也成立,则一定有(  )
A、P(n)对所有正整数都成立
B、P(n)对所有正偶数都成立
C、P(n)对所有正奇数都成立
D、P(n)对所有大于等于3的正奇数都成立

查看答案和解析>>

同步练习册答案