精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥中,平面平面,点分别是棱的中点,点的重心.

1)证明:平面

2)若与平面所成的角为,求二面角的余弦值.

【答案】1)证明见解析;(2

【解析】

1)根据三角形重心性质可得,根据三角形中位线性质得,再根据线面平行判定定理得平面平面,最后根据面面平行判定定理以及性质得结果;

2)先根据面面垂直性质定理得平面,确定与平面所成的角,再根据条件建立空间直角坐标系,求出各点坐标,利用向量数量积得各面法向量,最后根据向量夹角公式得法向量夹角,即得二面角所成角.

1)连接,连接并延长交于点,则点的中点,

从而点分别是棱的中点,

.

平面平面

平面平面.

平面

∴平面平面

平面

平面.

2)连接,∵的中点,∴

∵平面平面,平面平面

平面平面.

连接并延长交于点,则的中点,

连接,则,∴平面.

与平面所成的角,即.

中,设,则,∴.

,即

如图建立空间直角坐标系

.

设平面的一个法向量为

,可取

又平面的一个法向量为

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,过点的直线的参数方程为t为参数),y轴交于A,以该直角坐标系的原点O为极点,轴的非负半轴为极轴建立极坐标系.曲线C的极坐标方程,直线与曲线C交于MN两点.

1)求曲线C的直角坐标方程和点A的一个极坐标;

2)若,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面平面,点分别是棱的中点,点的重心.

1)证明:平面

2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若,关于的方程有三个不同的实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm.根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.

1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求X的数学期望;

2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中xi为抽取的第i个零件的尺寸,.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μσ(精确到0.01.

附:若随机变量Z服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义首项为1且公比为正数的等比数列为“M-数列”.

1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;

2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.

①求数列{bn}的通项公式;

②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当km时,都有成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年冬奥会申办成功,让中国冰雪项目迎来了新的发展机会,十四冬作为北京冬奥会前重要的练兵场,对冰雪运动产生了不可忽视的带动作用.某校对冰雪体育社团中甲、乙两人的滑轮、雪合战、雪地足球、冰尜(ga)、爬犁速降及俯卧式爬犁6个冬季体育运动项目进行了指标测试(指标值满分为5分,分高者为优),根据测试情况绘制了如图所示的指标雷达图.则下面叙述正确的是(

A.甲的轮滑指标高于他的雪地足球指标

B.乙的雪地足球指标低于甲的冰尜指标

C.甲的爬犁速降指标高于乙的爬犁速降指标

D.乙的俯卧式爬犁指标低于甲的雪合战指标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案