精英家教网 > 高中数学 > 题目详情
20.若a,b,c∈(0,1),并且a+b+c=2,则a2+b2+c2的取值范围是[$\frac{4}{3}$,2).

分析 先求出a2+b2+c2≤$\frac{4}{3}$,再求出a2+b2+c2<a+b+c=2,从而得到答案.

解答 解:由不等式a2+b2+c2≥ab+bc+ac,
得:3(a2+b2+c2)≥a2+b2+c2+2(ab+bc+ac)
即:3(a2+b2+c2≥(a+b+c)2=4,
∴a2+b2+c2≤$\frac{4}{3}$,
又a,b,c∈(0,1),
∴a>a2,b>b2,c>c2
∴a2+b2+c2<a+b+c=2,
即$\frac{4}{3}$≤a2+b2+c2<2,
故答案为:[$\frac{4}{3}$,2).

点评 本题考查了求不等式的范围问题,考查基本不等式的性质的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列an=2n-1,求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{x+1}$-$\sqrt{1-x}$值域为[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:A={x|x=a2+b2,a,b∈Z},若x1,x2∈A,求证:x1x2∈A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等差数列{an}中,a1+a2+a3=6,a5=5,
(1)求数列{bn}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知cosα=-$\frac{1}{2}$,则角α的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知C${\;}_{8}^{x}$+C${\;}_{8}^{x-1}$=C${\;}_{9}^{3}$,则x=3或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点P为正方形ABCD内一点,且满足∠PAB=∠PBA=15°,用坐标法证明△PCD为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列叙述正确的是(  )
A.任何两个变量都可以用一元线性回归关系进行合理的描述
B.只能采用最小二乘法对一元线性回归模型进行参数估计
C.对于一个样本.用最小二乘法估计得到的一元线性回归方程参数估计值是唯一的
D.任何两个相关关系的变量经过变换后郡可以化为一元线性回归关系

查看答案和解析>>

同步练习册答案