精英家教网 > 高中数学 > 题目详情
10.已知数列an=2n-1,求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

分析 由an=2n-1,可得$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”即可得出.

解答 解:∵an=2n-1,∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴前n项和Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

点评 本题考查了数列的“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)已知f($\frac{1}{x}$)=x+$\sqrt{{x}^{2}+1}$(x>0),求f(x).
(2)已知f(x)为一次函数,且f[f(x)]=9x+8,求f(x);
(3)已知f(x)满足关系式(x-1)f(x)+f($\frac{1}{x}$)=$\frac{1}{x-1}(x≠0,1)$,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将2个男生和4个女生排成一排:
(1)男生排在中间的排法有多少种?
(2)男生不在头尾的排法有多少种?
(3)男生不相邻的排法有多少种?
(4)男生不相邻且不在头尾的排法有多少种?
(5)2个男生都不与女生甲相邻的排法有多少种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)7位同学战成一排,其中甲站在中间位置,共有多少种不同的排法?
(2)7为同学站成一排,甲、乙只能站在两端的排法共有多少种?
(3)7为同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
(4)7为同学站成一排,其中甲不能在排头、乙不能在排尾的排法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知变量m,n满足$\left\{\begin{array}{l}{mn≥1}\\{|m+n|≤2}\end{array}\right.$,则z=$\frac{1}{m}$+$\frac{1}{n}$的取值范围是(  )
A.(-∞,2]B.[-2,2]C.(-∞,2]∪[2,+∞)D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}中的前n项和为Sn,若an=$\frac{1}{n(n+1)}$,求的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设向量$\overrightarrow{{a}_{i}}$=(cos2i°,1)$\overrightarrow{{b}_{i}}$=($\frac{1}{sin2i°}$,$\frac{1}{sin2i°}$),记号$\underset{\stackrel{n}{π}}{i=k}$ai表示akak+1ak+2…an,则$\underset{\stackrel{45}{π}}{i=1}$($\frac{1}{\overrightarrow{{a}_{i}}•\overrightarrow{{b}_{i}}}$+1)的值为223

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的值域.
(1)y=-3x2+1;
(2)y=2+$\sqrt{4-x}$;
(3)y=$\frac{2x}{5x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a,b,c∈(0,1),并且a+b+c=2,则a2+b2+c2的取值范围是[$\frac{4}{3}$,2).

查看答案和解析>>

同步练习册答案