精英家教网 > 高中数学 > 题目详情
10.若($\sqrt{{2}^{{x}^{2}}}$+$\root{5}{{2}^{-2x}}$)n展开式的二项式系数中第二、第三、第四项的系数成一个等差数列,且展开式第六项是21,求x.

分析 由题意得2${C}_{n}^{2}$=${C}_{n}^{1}$+${C}_{n}^{3}$,解方程得n的值,再利用二项式展开式中的通项公式求出第6项,列方程求出x的值.

解答 解:由题意得 2${C}_{n}^{2}$=${C}_{n}^{1}$+${C}_{n}^{3}$,
解得n=7;
在($\sqrt{{2}^{{x}^{2}}}$+$\root{5}{{2}^{-2x}}$)n=${(\sqrt{{2}^{{x}^{2}}}+\root{5}{{2}^{-2x}})}^{7}$的展开式中,
其通项公式为:
Tr+1=${C}_{7}^{r}$•${2}^{{x}^{2}•\frac{7-r}{2}}$•${2}^{-\frac{2xr}{5}}$=${C}_{7}^{r}$•${2}^{{x}^{2}•\frac{7-r}{2}-\frac{2xr}{5}}$,
故第6项为${C}_{7}^{5}$•${2}^{{x}^{2}-2x}$=21,
∴x2-2x=0,
解得x=0或x=2.

点评 本题考查了二项式定理的应用问题,解题时应用二项展开式的通项公式求某项的系数,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的前n项和Sn=p×2n+2,{an}是等比数列的充要条件是(  )
A.p=1B.p=2C.p=-1D.p=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}是公差不为0的等差数列,且a1,a3,a7为正项等比数列{bn}的第5,7,9项,则数列{bn}的公比为(  )
A.2B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.{x|x2+2016(a+2)x+a2-4=0}={0},则a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知tanθ=$\frac{1}{2}$,且θ∈(π,$\frac{3}{2}$π),求cosθ-sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,点D在∠CAB内,且∠DAB=30°,设$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),则$\frac{λ}{μ}$等于(  )
A.3B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边上一点P的坐标是(-1,$\sqrt{3}$),则角α在0°~360°范围内的值是(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{4},|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,则$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{5+2\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若 l、m是两条直线,m⊥平面α,则“l⊥m”是“l∥α”的(  )
A.充分必要条件B.充分非必要条件
C.必要非充分条件D.既非充分又非必要条件

查看答案和解析>>

同步练习册答案