精英家教网 > 高中数学 > 题目详情
已知A(1,1)为椭圆内一点,F1为椭圆左焦点,P为椭圆上一动点,则|PF1|+|PA|的最大值和最小值分别是___________.

解析:由可知a=3,b=,c=2,左焦点?F1(-2,0)?,右焦点F2(2,0).?

由椭圆定义,|PF1|=2a-|PF2|=6-|PF2|,?

∴|PF1|+|PA|=6-|PF2|+|PA|=6+|PA|-|PF2|.?

由||PA|-|PF2||≤|AF2|=知-≤|PA|-|PF2|≤.当PAF2延长线上的P2处时,取右等号;当PAF2的反向延长线上的P1处时,取左等号,即|PA|-|PF2|的最大值、最小值分别为.于是|PF1|+|PA|的最大值是,最小值是.

答案:,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省怀化市高三第二次模拟考试理科数学试卷(解析版) 题型:选择题

下图展示了一个由区间(其中为一正实数)到实数集R上的映射过程:区间中的实数对应线段上的点,如图1;将线段围成一个离心率为的椭圆,使两端点恰好重合于椭圆的一个短轴端点,如图2 ;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在轴上,已知此时点的坐标为,如图3,在图形变化过程中,图1中线段的长度对应于图3中的椭圆弧ADM的长度.图3中直线与直线交于点,则与实数对应的实数就是,记作,

现给出下列5个命题

;   ②函数是奇函数;③函数上单调递增;   ④.函数的图象关于点对称;⑤函数时AM过椭圆的右焦点.其中所有的真命题是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

查看答案和解析>>

科目:高中数学 来源:2013届海南省高二上学期期末文科数学试题(解析版) 题型:解答题

(本小题满分12分)已知A,B两点是椭圆 与坐标轴正半轴的两个交点.

(1)设为参数,求椭圆的参数方程;

(2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二下学期一调考试理科数学 题型:解答题

(本题12分)已知圆C的圆心为C(m,0),(m<3),半径为,圆C与椭圆E:  有一个公共点A(3,1),分别是椭圆的左、右焦点;

(Ⅰ)求圆C的标准方程;

(Ⅱ)若点P的坐标为(4,4),试探究斜率为k的直线与圆C能否相切,若能,求出椭

圆E和直线的方程,若不能,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2012年四川省乐山市高考数学二模试卷(文科)(解析版) 题型:选择题

已知P是椭画+=1左准线上一点,F1、F2分别是其左、右焦点,PF2与椭圆交于点Q,且=2,则||的值为( )
A.
B.4
C.
D.

查看答案和解析>>

同步练习册答案