| A. | (0,1) | B. | (0,$\frac{3}{2}$) | C. | (-∞,1) | D. | (-∞,$\frac{4}{3}$) |
分析 由题意分离出a可得存在x∈(0,+∞),使得不等式a<$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$成立,由函数的单调性求出右边式子的最大值可得.
解答 解:由题意可得存在x∈(0,+∞),使得不等式(ex+1)(ax+2a-2)-2<0成立,
故可得存在x∈(0,+∞),使得不等式(ex+1)(ax+2a-2)<2成立,
即存在x∈(0,+∞),使得不等式a(x+2)<2+$\frac{2}{2+{e}^{x}}$成立,
即存在x∈(0,+∞),使得不等式a<$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$成立,
又可得函数g(x)=$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$在x∈(0,+∞)单调递减,
∴g(x)<g(0)=$\frac{4}{3}$,∴实数a的取值范围为(-∞,$\frac{4}{3}$)
故选:D.
点评 本题以特称命题为载体,考查函数的单调性和值域,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.8413 | B. | 0.6587 | C. | 0.1587 | D. | 0.3413 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移1个单位长度 | B. | 向右平移1个单位长度 | ||
| C. | 向左平移$\frac{1}{3}$个单位长度 | D. | 向右平移$\frac{1}{3}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{3}{\sqrt{5}}$ | D. | $\frac{3}{\sqrt{5}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com