精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=(ex+1)(ax+2a-2),若存在x∈(0,+∞),使得不等式f(x)-2<0成立,则实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{3}{2}$)C.(-∞,1)D.(-∞,$\frac{4}{3}$)

分析 由题意分离出a可得存在x∈(0,+∞),使得不等式a<$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$成立,由函数的单调性求出右边式子的最大值可得.

解答 解:由题意可得存在x∈(0,+∞),使得不等式(ex+1)(ax+2a-2)-2<0成立,
故可得存在x∈(0,+∞),使得不等式(ex+1)(ax+2a-2)<2成立,
即存在x∈(0,+∞),使得不等式a(x+2)<2+$\frac{2}{2+{e}^{x}}$成立,
即存在x∈(0,+∞),使得不等式a<$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$成立,
又可得函数g(x)=$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$在x∈(0,+∞)单调递减,
∴g(x)<g(0)=$\frac{4}{3}$,∴实数a的取值范围为(-∞,$\frac{4}{3}$)
故选:D.

点评 本题以特称命题为载体,考查函数的单调性和值域,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.A、B两岛相距100海里,B在A北偏东30°方向,甲船A以50海里/小时的速度向B航行,同时,乙船从B以30诲里/小时的速度沿南偏东30°方向航行,则$1\frac{16}{49}$小时后两船之间距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设点(a,b)是区域$\left\{\begin{array}{l}x+y-4≤0\\ x>0\\ y>0\end{array}$内的任意一点,则使函数f(x)=ax2-2bx+3在区间[$\frac{1}{2}$,+∞)上是增函数的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若随机变量X~N(2,1),且P(X>3)=0.1587,则P(X<1)=(  )
A.0.8413B.0.6587C.0.1587D.0.3413

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}x+2y≤6\\ 2x-y≤6\\ x≥0,y≥0\end{array}\right.$则x-3y>0的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC外接圆的圆心为O,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了得到函数的图象y=sin3x,只需把函数y=sin(3x+1)的图象上所有的点(  )
A.向左平移1个单位长度B.向右平移1个单位长度
C.向左平移$\frac{1}{3}$个单位长度D.向右平移$\frac{1}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若sinx=$\frac{\sqrt{5}}{5}$,则cos2x=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{3}{\sqrt{5}}$D.$\frac{3}{\sqrt{5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.
(1)求证:f(7)具有性质P;
(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.

查看答案和解析>>

同步练习册答案