精英家教网 > 高中数学 > 题目详情
如图,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB上一点

(I) 当点E为AB的中点时,求证;BD1//平面A1DE
(II)求点A1到平面BDD1的距离;
(III)  当时,求二面角D1-EC-D的大小.
(1)略  (2)A1到面BDD1的距离为 (3)D1-EC-D的大小为
(I) 要证BD1//平面A1DE,只要证明BD1平行该面内的一条直线,取中点,由中位线可证得;(II)等积法求高;(III)可以用传统法找出平面角也可以向量法求。
解法一:(I)证明:连结AD1交A1D于F,则F为中点,连结EF,如图.

∵ E为中点,∴ EF//BD1.又EF面A1DE,BD1面A1DE,
∴ BD1//面A1DE.……………3分
(II)在Rt△ABD中,AB=2AD=2,可得BD=

设A1到面BDD1的距离为d,则由
,即,解得
即A1到面BDD1的距离为.……………………………………………8分
(III)连结EC.由,有
过D作DH⊥EC于H,连结D1H,由已知面AA1D1D⊥面ABCD且DD1⊥AD,
∴DD1⊥面ABCD.由三垂线定理知:D1H⊥EC,∴ ∠DHD1为D1-EC-D的平面角.
Rt△EBC中,由,BC=1,得.又DH·EC=DC·BC,代入解得
∴在Rt△DHD1中,.∴,即二面角D1-EC-D的大小为.…………12分
解法二:(I)同解法一.………………3分
(II)由面ABCD⊥面ADD1A,且四边形AA1D1D为正方形,四边形ABCD为矩形,可得D1D⊥AD,D1D⊥DC,DC⊥DA.
于是以D为原点,DA,DC,DD1分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.

由AB=2AD=2知:D(0,0,0),D1(0,0,1),A1(1,0,1),B(1,2,0),
=(1,2,0),=(0,0,1),=(0,2,-1).设面BDD1的一个法向量为n1
 即 ∴
∴ 点A1到面BDD1的距离.  …………………………8分
(III)由(II)及题意知:E(1,,0),C(0,2,0),
设面D1EC的一个法向量为
  即可得
又易知面DEC的一个法向量是(0,0,1),
设D1-EC-D的大小为θ,则,得
即D1-EC-D的大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图所示,正方体ABCD-A1B1C1D1的棱长为aMN分别为A1BAC上的点,A1MANa,则MN与平面BB1C1C的位置关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长是2的正方体-中,分别为
的中点. 应用空间向量方法求解下列问题.

(1)求EF的长
(2)证明:平面
(3)证明: 平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△,使得平面⊥平面ABD.

(Ⅰ)求证:平面ABD;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间直角坐标系中有一点,点平面内的直线    上的动点,则两点的最短距离是(   )
A.B.C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为4的菱形中,.点分别在边上,点与点不重合,.沿翻折到的位置,使平面平面
(1)求证:平面
(2)设点满足,试探究:当取得最小值时,直线与平面所成角的大小是否一定大于?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个水平放置的正三棱柱是棱的中点.正三棱柱的主视图如图

(Ⅰ) 图中垂直于平面的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
(Ⅱ)求正三棱柱的体积;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图7-15,在正三棱柱ABC—A1B1C1中,各棱长都等于a,D、E分别是AC1、BB1的中点,
(1)求证:DE是异面直线AC1与BB1的公垂线段,并求其长度;
(2)求二面角E—AC1—C的大小;
(3)求点C1到平面AEC的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为1的正四面体ABCD中,E是BC的中点,则 _  ▲   .

查看答案和解析>>

同步练习册答案