【题目】已知
是数列
的前
项和,对任意
,都有
;
(1)若
,求证:数列
是等差数列,并求此时数列
的通项公式;
(2)若
,求证:数列
是等比数列,并求此时数列
的通项公式;
(3)设
,若
,求实数
的取值范围.
【答案】(1)证明见解析,
;(2)
;(3)
.
【解析】
(1)将
代入
,得
,令
,求出
,然后令
,由
得出
,两式作差可得出数列
的递推公式,然后利用定义证明出数列
是等差数列,确定该数列的首项,即可求出
;
(2)令
求出
,然后令
,由
得出
,两式相减得出数列
的递推公式,然后利用定义证明出数列
为等比数列,确定该数列的首项和公比,即可求出
;
(3)结合(1)(2)中的结论,讨论
、
、
、
、
,结合条件
,利用数列
的单调性,即可得出实数
的取值范围.
(1)将
代入
,得
,即
.
当
时,则有
,得
;
当
时, 由
得出
,
上述两式相减得
,
整理得
,等式两边同时除以
得
,即
,
所以,数列
是以首项为
为首项,以
为公差的等差数列,
则
,因此,
;
(2)对任意
,都有
.
当
时,
,解得
;
当
时,由
得出
,
两式相减得
,
化简得
,
![]()
,
所以,数列
是以
为公比,以
为首项的等比数列,则
,因此,
;
(3)
,且
.
当
时,
,当
时,
,不满足条件;
则
,可得
,
可得
,
显然
时,数列
单调递增,不满足条件,
.
当
时,则有
显然成立;
当
时,若
,则数列
的最大项为
,
,即
恒成立;
当
时,数列
的最大项为
,
则
满足条件;
当
时,
,数列
的最大项为
,不满足条件;
综上所述,实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】如图,A、B是海岸线OM、ON上两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为
、
,测得
,
,以点O为坐标原点,射线OM为x轴的正半轴,建立如图所示的直角坐标系,一艘游轮以
小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q).
![]()
(1)问游轮自码头A沿
方向开往码头B共需多少分钟?
(2)海中有一处景点P(设点P在
平面内,
,且
),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的左、右焦点分别为
,左项点为
上顶点为
.已知
.
(1)求椭圆的离心率;
(2)设
为椭圆
上在第一象限内一点,射线
与椭圆
的另一个公共点为
,满足
,直线
交
轴于点,
的面积为
.
(i)求椭圆
的方程.
(ii)过点
作不与
轴垂直的直线
交椭圆
于
(异于点
)两点,试判断
的大小是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为常数,
且
),且数列
是首项为
,公差为
的等差数列.
(1)求证:数列
是等比数列;
(2)若
,当
时,求数列
的前
项和
的最小值;
(3)若
,问是否存在实数
,使得
是递增数列?若存在,求出
的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
,关于
的方程
,给出下列结论
①存在这样的实数
,使得方程有3个不同的实根
②不存在这样的实数
,是的方程有4个不同的实根
③存在这样的实数
,是的方程有5个不同的实根
④不存在这样的实数
,是的方程有6个不同的实根
其中正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
是椭圆
:
上的点,过点
的直线的方程为
.
(1)求椭圆
的离心率;
(2)当
时,
(i)设直线
与
轴、
轴分别相交于
,
两点,求
的最小值;
(ii)设椭圆
的左、右焦点分别为
,
,点
与点
关于直线
对称,求证:点
,
,
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
![]()
(1)求图中
的值;
(2)根据已知条件完成下面
列联表,并判断能否有
的把握认为“晋级成功”与性别有关?
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(参考公式:
,其中
)
| 0.40 | 0.025 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)将频率视为概率,从本次考试80分以上的所有人员中,按分层抽样的方式抽取5个人的样本;现从5人样本中随机选取2人,求选取的2人恰好都来自区间
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com