精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c.若b=4,
BA
BC
=8.
(1)求a2+c2的值;
(2)求函数f(B)=
3
sinBcosB+cos2B的值域.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)利用平面向量的数量积运算法则化简
BA
BC
=8,再利用余弦定理列出关系式,将化简结果及b的值代入计算即可求出a2+c2的值;
(2)由基本不等式求出ac的范围,根据accosB=8表示出cosB,由ac的范围求出cosB的范围,进而利用余弦函数性质求出B的范围,f(B)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,由B的范围求出这个角的范围,利用正弦函数的值域即可确定出f(B)的范围.
解答: 解:(1)∵
BA
BC
=8,∴accosB=8,
由余弦定理得b2=a2+c2-2accosB=a2+c2-16,
∵b=4,
∴a2+c2=32;
(2)∵a2+c2≥2ac,
∴ac≤16,
∵accosB=8,
∴cosB=
8
ac
1
2

∵B∈(0,π),
∴0<B≤
π
3

∵f(B)=
3
sinBcosB+cos2B=
3
2
sin2B+
1
2
(1+cos2B)=sin(2B+
π
6
)+
1
2

π
6
<2B+
π
6
6

∴sin(2B+
π
6
)∈[
1
2
,1],
则f(B)的值域为[1,
3
2
].
点评:此题考查了正弦、余弦定理,平面向量的数量积运算,二倍角的正弦、余弦函数公式,以及正弦函数的值域,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a+i
1-i
(a∈R)是纯虚数,则|
a+i
1-i
|=(  )
A、i
B、1
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设i为虚数单位,复数z的共轭复数为
.
z
,且(
.
z
-1)(1+i)=2i,则复数z=(  )
A、2+iB、2-i
C、-2+iD、-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
3
2
-
a
x
,(a为常数)
(1)若方程e2f(x)=g(x)在区间[
1
2
,1]上有解,求实数a的取值范围;
(2)当a=1时,证明不等式g(x)<f(x)<x-2在[4,+∞)上恒成立;
(3)证明:
5n
4
+
1
60
n
k=1
[2f(2k+1)-f(k+1)-f(k)
]<2n+1,(n∈N*)(参考数据:ln2≈0.693)

查看答案和解析>>

科目:高中数学 来源: 题型:

各项均为正数的数列{an}中,设Sn=a1+a2+…+an,Tn=
1
a1
+
1
a2
+…+
1
an
,且(2-Sn)(1+Tn)=2,n∈N*
(1)设bn=2-Sn,证明数列{bn}是等比数列;
(2)设cn=
1
2
nan,求集合{(m,k,r)|cm+cr=2ck,m<k<r,m,k,r∈N*}.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a、b、c∈R,且a>0),若a=1,又知x1,x2是方程f(x)=0的两个根,且x1,x2∈(m,m+1),其中m∈R,求f(m)f(m+1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,且当x=1时取得极值-2,
(1)当x>0时,求f(x)的单调区间;
(2)设g(x)=x4-2x2-3,对任意x∈[-
3
3
]都有f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=t,且an+1=2Sn+1,n∈N*
(Ⅰ)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设bn=log3an+1,数列{
bn
an
}的前n项和Tn,证明Tn
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|y=lg(1-x)},B={x||x|<a,a∈R},(∁uA)∩B=∅,则a的取值范围是
 

查看答案和解析>>

同步练习册答案