精英家教网 > 高中数学 > 题目详情

【题目】设函数 的导函数为.

(1)讨论函数的单调区间;

(2)对于曲线上的不同两点,求证:在内存在唯一的,使直线的斜率等于.

【答案】(1)a>0时, 上单调递增,在上单调递减.时在(0,+∞)单调递减. (2)见证明

【解析】

(1)对a分两种情况讨论,利用导数求函数的单调区间;(2)即 只需证明,且唯一.再构造函数证明得解.

解:(1)

的定义域为

时,函数在区间上单调递减;

时,

该函数在上单调递增,在上单调递减.

(2)∵

,化简得

因此,要证明原命题成立,只需证明

,且唯一.

再设

是增函数,

,∴

同理

∵一次函数上是增函数,

因此由①②③得有唯一解

故原命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形ABCD中,AD1ADBCABBCBDDC,点EBC边的中点,将ABD沿BD折起,使平面ABD⊥平面BCD,连接AEACDE,得到如图②所示的几何体.

(1)求证:AB⊥平面ADC

(2)AC与平面ABD所成角的正切值为,求二面角BADE的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系O中,直线与抛物线2相交于AB两点.

1)求证:命题“如果直线过点T30),那么3”是真命题;

2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,分别为椭圆:的左右焦点,已知椭圆上的点到焦点,的距离之和为4.

(1)求椭圆的方程;

(2)过点作直线交椭圆,两点,线段的中点为,连结并延长交椭圆于点(为坐标原点),若,,等比数列,求线段的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2)在图2中:

(1)求证:平面 平面

(2)在线段上是否存点,使得二面角为大小为说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为平行四边形,  平面,且的中点.

1)求证: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关……”其大意为:“某人从距离关口三百七十八里处出发,第一天走得轻快有力,从第二天起,由于脚痛,每天走的路程为前一天的一半,共走了六天到达关口……” 那么该人第一天走的路程为______________

查看答案和解析>>

同步练习册答案