精英家教网 > 高中数学 > 题目详情
已知定义域为R的奇函数f(x)在[0,+∞)上为减函数,判断 f(x)在(-∞,0)上的单调性并给以证明.
分析:设x1,x2∈(-∞,0),且x1<x2,则有-x1>-x2>0,然后根据奇函数f(x)在[0,+∞)上为减函数,建立不等关系,化简即可得到f(x1)>f(x2),从而得到函数的单调性.
解答:解:f(x)是(-∞,0)上的单调递减函数.
证明如下:设x1,x2∈(-∞,0),且x1<x2,则有-x1>-x2>0…(4分)
∵f(x)是[0,+∞)上的减函数∴f(-x1)<f(-x2)…(7分)
又∵f(x)为R上的奇函数∴-f(x1)<-f(x2),即f(x1)>f(x2).…(10分)
故f(x)是(-∞,0)上的单调递减函数…..(12分)
点评:本题主要考查了函数的奇偶性,以及函数单调性的判断与证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x),当x>0时,f(x)=lnx.
(1)求函数f(x)的解析式;
(2)若函数h(x)=f(x)+
a
x
在[1,e]上的最小值为3,求a的值;
(3)若存在x0∈[1,+∞),使得f(x0)>x02+
a
x0
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)在(-∞,0)上是增函数,且f(-1)=0,则满足xf(x)≤0的x的取值的范围为
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)=
a•2x+b
2x+1
,且f(2)=
3
5

(1)求实数a,b的值;
(2)解不等式:f-1(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义域为R的奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x),当x>0时,f(x)=ln x-ax+1(a∈R).
(1)求函数f(x)的解析式;
(2)若函数y=f(x)在R上恰有5个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案