精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣alnx,g(x)=﹣ ,其中a∈R
(1)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.

【答案】
(1)解:函数h(x)=x﹣alnx+ 的定义域为(0,+∞),

h′(x)=1﹣ =

①当1+a≤0,即a≤﹣1时,

h′(x)>0,

故h(x)在(0,+∞)上是增函数;

②当1+a>0,即a>﹣1时,

x∈(0,1+a)时,h′(x)<0;x∈(1+a,+∞)时,h′(x)>0;

故h(x)在(0,1+a)上是减函数,在(1+a,+∞)上是增函数


(2)解:由(1)令h(x0)=f(x0)﹣g(x0),x0∈[1,e],

①当a≤﹣1时,

存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为

h(1)=1+1+a<0,

解得,a<﹣2;

②当﹣1<a≤0时,

存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为

h(1)=1+1+a<0,解得,a<﹣2;

③当0<a≤e﹣1时,

存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为

h(1+a)=1+a﹣aln(1+a)+1<0,无解;

④当e﹣1<a时,

存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为

h(e)=e﹣a+ <0,

解得,a>

综上所述,

a的取值范围为(﹣∞,﹣2)∪( ,+∞)


【解析】(1)先求函数h(x)的定义域,求出函数h(x)的导数,从而讨论判断函数的单调性;(2)分类讨论函数的单调性,从而化存在性问题为最值问题,从而解得.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对定义域内R内的任意x都有f(x)=f(4﹣x),且当x≠2时,其导数f'(x)满足xf'(x)>2f'(x),若2<a<4,则(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形ABC中,B(﹣1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求动点A的轨迹M的方程;
(Ⅱ)P为轨迹M上动点,△PBC的内切圆面积为S1 , 外接圆面积为S2 , 当P在M上运动时,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为 的正方形,AA1=3,E是AA1的中点,过C1作C1F⊥平面BDE与平面ABB1A1交于点F,则CF与平面ABCD所成角的正切值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 向右平移 个单位后得到y=g(x)的图象,若函数y=g(x)在区间[a,b](b>a)上的值域是 ,则b﹣a的最小值m和最大值M分别为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mln(x+1)﹣nx在点(1,f(1))处的切线与y轴垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的单调区间;
(Ⅱ)设g(x)=﹣x2+2x,确定非负实数a的取值范围,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)= ,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案