精英家教网 > 高中数学 > 题目详情

已如数列{an}是首项为a且公比q不等于的等比数列,Sn是其前n项和,a1、2a7、3a4成等差数列.

(1)证明:12S3,S6,S12-S6成等比数列;

(2)求和Tn=a1+2a4+3a7+…+na3n-2

答案:
解析:

  (1)证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4,即4aq6=a+3aq3

  变形得(4q3+1)(q3-1)=0,

  

  


提示:

整体思想的应用是本题求解的关键,另外等差等比数列的基本知识也应熟练掌握.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•蚌埠二模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理科做,文科不做)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知{an}是首项为1,公比为q的等比数列,Pn=a1+a2
C
1
n
+a3
C
2
n
+…+an+1
C
n
n
(n∈N*,n>2),Qn=
C
0
n
+
C
2
n
+
C
4
n
+…+
C
m
n
,(其中m=2[
n
2
],[t]
表示t的最大整数,如[2.5]=2).如果数列{
Pn
Qn
}
有极限,那么公比q的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理)设{an}的公差d(d>0)为已知常数,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?并请说明理由.
(4)(文)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1,公比为q的等比数列,Pn=a1+a2 +a3 +…+an+1(n∈N *,n>2),Qn=+++…+,(其中m=2[],[t]表示t的最大整数,如[2.5]=2).如果数列{}有极限,那么公比q的取值范围是(    )

A.-1<q≤1,且q≠0                           B.-1<q<1,且q≠0

C.-3<q≤1,且q≠0                           D.-3<q<1,且q≠0

查看答案和解析>>

同步练习册答案