精英家教网 > 高中数学 > 题目详情

为实数,函数
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当时,

(Ⅰ)的单调递减区间是,单调递增区间是,极小值为;(Ⅱ) 见解析.

解析试题分析:(Ⅰ)直接根据导数和零的大小关系求得单调区间,并由单调性求得极值;(Ⅱ)先由导数判断出在R内单调递增,说明对任意,都有,而,从而得证.
试题解析:(1)解:由知,
,得.于是,当变化时,的变化情况如下表:







0
+

单调递减

单调递增
的单调递减区间是,单调递增区间是处取得极小值,极小值为.                 
(2)证明:设,于是
由(1)知,对任意,都有,所以在R内单调递增.
于是,当时,对任意,都有,而
从而对任意,都有,即
考点:1.利用导数研究函数的单调性;2. 利用导数求函数极值3.利用函数的最值证明不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=+ax-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥2时,讨论函数f(x)的单调性;
(Ⅲ)若对任意及任意∈[1,2],恒有成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中).
(1) 当时,求函数的单调区间和极值;
(2) 当时,函数上有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)试确定的值,使不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).
提示:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将接通.已知,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设所成的小于的角为

(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若在(0,)单调递减,求a的最小值
(Ⅱ)若有两个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求的极值,并证明:若
(2)设,且,证明:
,由上述结论猜想一个一般性结论(不需要证明);
(3)证明:若,则.

查看答案和解析>>

同步练习册答案