设为实数,函数
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当且时,
(Ⅰ)的单调递减区间是,单调递增区间是,极小值为;(Ⅱ) 见解析.
解析试题分析:(Ⅰ)直接根据导数和零的大小关系求得单调区间,并由单调性求得极值;(Ⅱ)先由导数判断出在R内单调递增,说明对任意,都有,而,从而得证.
试题解析:(1)解:由知,.
令,得.于是,当变化时,和的变化情况如下表:
故的单调递减区间是,单调递增区间是.在处取得极小值,极小值为. 0 + 单调递减 单调递增
(2)证明:设,于是.
由(1)知,对任意,都有,所以在R内单调递增.
于是,当时,对任意,都有,而,
从而对任意,都有,即故
考点:1.利用导数研究函数的单调性;2. 利用导数求函数极值3.利用函数的最值证明不等式.
科目:高中数学 来源: 题型:解答题
设函数f(x)=+ax-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥2时,讨论函数f(x)的单调性;
(Ⅲ)若对任意及任意,∈[1,2],恒有成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将与接通.已知,,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设与所成的小于的角为.
(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com