精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a,n=1,2,…,其中a,b均为正整数,且a1<b1<a2<b2<a3
(Ⅰ)求a的值;
(Ⅱ)若对于{an},{bn},存在关系式am+1=bn,试求b的值;
(Ⅲ)对于满足(Ⅱ)中关系式的am,试求a1+a2+…+am

解:(I)由题设知,an=a+(n-1)b,(1分)
由已知可得,a<b<a+b<ab<a+2b
∴b<ab,a>1(2分)
∴ab<a+2b<3b又∵b>0
∴a<3(3分)
∵a为正整数
∴a=2(4分)
(II)am+1=bn,可得a+(m-1)+1=b•an-1(5分)
∵a=2
∴3+(m-1)b=b•2n-1(6分)
∵b>a=2且b为正整数∴2n-1-(m-1)=1(7分)
∴b=3(8分)
(III)由(II)知,m=2n-1,an=3n-1
∴a1+a2+…+am=(3•1-1)+(3•2-1)+…(3•2n-1-1)(9分)
=
=(11分)
=3•22n-3+2n-2(12分)
分析:(I)由题设可求,an,bn,结合已知a1<b1<a2<b2<a3.可得a<3,由a为正整数可求a
(II)由am+1=bn,a=2可求得,由b>a=2且b为正整数 可求
(III)由(II)知,m=2n-1,an=3n-1,代入a1+a2+…+am=(3•1-1)+(3•2-1)+…(3•2n-1-1),利用分组求和,结合等差数列的求和公式可求
点评:本题主要考查了等差数列与等比数列的通项公式的应用,求和公式的应用,解答本题还要求考生具备一定的综合应用知识的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案