精英家教网 > 高中数学 > 题目详情
15.已知函数y=3x2-x-2在区间[0,m]上的值域为[-$\frac{25}{12}$,-2],求实数m的取值范围.

分析 求出函数的对称轴,对称轴时的函数值,然后利用已知条件求解即可.

解答 解:函数y=3x2-x-2=3(x-$\frac{1}{6}$)2-$\frac{25}{12}$,对称轴为x=$\frac{1}{6}$,并且函数的开口向上,
3x2-x-2=-2,可得x=0或$\frac{1}{3}$
∵f($\frac{1}{6}$)=-$\frac{25}{12}$,f(0)=f($\frac{1}{3}$)=-2,函数y=3x2-x-2在区间[0,m]上的值域为[-$\frac{25}{12}$,-2],
∴可得$\frac{1}{6}$≤m≤$\frac{1}{3}$,
∴实数m的取值范围:[$\frac{1}{6}$,$\frac{1}{3}$].

点评 本题考查二次函数的性质的应用,注意端点的函数值与求解的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图所示,O是正方体ABCD-A1B1C1D1对角线A1C与AC1的交点,E为棱BB1的中点,则空间四边形OEC1D1在正方体各面上的投影不可能是①

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f1(x)=$\frac{2x-1}{x+1}$,对于n∈N*,定义fn+1(x)=f1(fn(x)),则f6n+1(x)=$\frac{2x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知由一组样本数据确定的回归直线方程为y=1.5x+1,且$\overline x$=2,发现有两组数据(2.4,2.8)与(1.6,5.2)误差较大,去掉这两组数据后,重新求得回归直线的斜率为1,那么当x=4时,y的估计值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算x+y+z=6的正整数解有多少组?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校高二年段共有10个班级,现从外地转入4名学生,要安排到该年段的两个班级且每班安排2名,则不同的安排方法共有(  )
A.540种B.270种C.180种D.90种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义集合A={x|2x≥1},B={y|y=$\sqrt{1-{x^2}}$},则A∩∁RB=(  )
A.(1,+∞)B.[0,1]C.[0,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sin(α+$\frac{π}{6}$)+cosα=$\frac{{4\sqrt{3}}}{5}$,则cos(α-$\frac{π}{6}$)的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递减区间是(  )
A.[3k-1,3k+2](k∈Z)B.[3k-4,3k-1](k∈Z)C.[6k-1,6k+2](k∈Z)D.[6k-4,6k-1](k∈Z)

查看答案和解析>>

同步练习册答案