分析 函数对于n∈N*,定义fn+1(x)=f1[fn(x)],分别计算前n项,得到从f1(x)到f6(x),每6个一循环.由此能求出结果.
解答 解:∵函数对于n∈N*,定义fn+1(x)=f1[fn(x)],
∴f2(x)=f1[f1(x)]=f1($\frac{2x-1}{x+1}$)=$\frac{2•\frac{2x-1}{x+1}-1}{\frac{2x-1}{x+1}+1}$=$\frac{x-1}{x}$;
f3(x)=f1[f2(x)]=f1($\frac{x-1}{x}$)=$\frac{2•\frac{x-1}{x}-1}{\frac{x-1}{x}+1}$=$\frac{x-2}{2x-1}$;
f4(x)=f1[f3(x)]=f1($\frac{x-2}{2x-1}$)=$\frac{2•\frac{x-2}{2x-1}-1}{\frac{x-2}{2x-1}+1}$=$\frac{1}{1-x}$;
f5(x)=f1[f4(x)]=f1($\frac{1}{1-x}$)=$\frac{2•\frac{1}{1-x}-1}{\frac{1}{1-x}+1}$=$\frac{x+1}{2-x}$;
f6(x)=f1[f5(x)]=f1($\frac{x+1}{2-x}$)=$\frac{2•\frac{x+1}{2-x}-1}{\frac{x+1}{2-x}+1}$=x,
f7(x)=f1[f6(x)]=f1(x)=$\frac{2x-1}{x+1}$=f1(x).
所以从f1(x)到f6(x),每6个一循环.
则f6n+1(x)=$\frac{2x-1}{x+1}$.
故答案为:$\frac{2x-1}{x+1}$.
点评 本题考查函数的周期性,是基础题.解题时要认真运算,解题的关键是得到从f1(x)到f6(x),每6个一循环.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{2}$ | B. | $\sqrt{2}$+$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com