分析 先构造函数F(x)=f(x)-$\frac{1}{3}$x,根据条件求出函数F(x)的单调性,结合不等式f(x)<$\frac{x}{3}+\frac{2}{3}$,变形得到F(x)<F(1),根据单调性解之即可.
解答 解:令F(x)=f(x)-$\frac{1}{3}$x,则
F'(x)=f'(x)-$\frac{1}{3}$<0,
∴函数F(x)在R上单调递减函数,
∵f(x)<$\frac{x}{3}+\frac{2}{3}$,
∴f(x)-$\frac{1}{3}$x<f(1)-$\frac{1}{3}$,
即F(x)<F(1),
根据函数F(x)在R上单调递减函数可知x>1,
故答案为:(1,+∞).
点评 本题主要考查了函数的单调性与导数的关系,解决本题的关键是构造法的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [0,1] | C. | [0,1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3k-1,3k+2](k∈Z) | B. | [3k-4,3k-1](k∈Z) | C. | [6k-1,6k+2](k∈Z) | D. | [6k-4,6k-1](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com