分析 (1)由MN∥BC,BC∥AD,得MN∥AD.由PA⊥平面ABCD,得PA⊥AD.结合AD⊥AB,PA∩AB=A,得AD⊥平面PBA,即可证得MN⊥平面PBA,又MN?平面AMN,即可证得结论;
(2)由几何关系进行计算,运用等体积法是解题的关键.
解答 (Ⅰ)证明:∵MN∥BC,BC∥AD,∴MN∥AD,
∵PA⊥平面ABCD,
∴PA⊥AD,
又∵AD⊥AB,PA∩AB=A,
∴AD⊥平面PBA,
∴MN⊥平面PBA,
又∵MN?平面AMN,
∴平面AMN⊥平面PBA. …(6分)
(Ⅱ)由(Ⅰ)知AD⊥平面PBA,又∵BC∥AD,
∴BC⊥平面PBA,∴BC⊥BM,
∵M为PB的中点,
∴在Rt△MBC中,$MB=\frac{{\sqrt{2}}}{2}$,BC=1,
∴$MC=\frac{{\sqrt{6}}}{2}$,
由题意可得$AM=\frac{{\sqrt{2}}}{2}$,$AC=\sqrt{2}$,
∴AM2+AC2=MC2,
∴△AMC是直角三角形设点D到平面AMC的距离为h,
∵VM-ADC=VD-AMC,
∴$\frac{1}{3}×\frac{1}{2}×2×1×\frac{1}{2}=\frac{1}{3}×\frac{1}{2}×\frac{{\sqrt{2}}}{2}×\frac{{\sqrt{6}}}{2}×h$,
∴$h=\frac{{2\sqrt{3}}}{3}$…(12分)
点评 本题考查学生的推理论证能力,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0)∪(2,+∞) | B. | (-2,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-5,3) | B. | [-5,-4) | C. | [-5,4) | D. | (-4,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 简单随机抽样 | B. | 系统抽样 | C. | 分层抽样 | D. | 抽签法 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com