精英家教网 > 高中数学 > 题目详情
12.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf'(x)+f(x)<0恒成立,则不等式xf(x)>0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

分析 由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(2)=0得g(2)=0、还有g(0)=0,再通过奇偶性进行转化,利用单调性求出不等式得解集.

解答 解:令g(x)=xf(x),g′(x)=xf'(x)+f(x)<0,
∴g(x)在(0,+∞)递减,
∵f(x)是定义在R上的奇函数,
∴f(-x)=-f(x),
∴g(-x)=-xf(-x)=xf(x)=g(x),
∴g(x)在R是偶函数,
∴g(x)在(-∞,0)递增,
而f(2)=0,故g(2)=g(-2)=0,
∴不等式xf(x)>0,
∴g(x)<g(2),∴|x|<2,
解得:-2<x<2,
而x=0时,g(x)=0,
故不等式的解集是(-2,0)∪(0,2),
故选:D.

点评 本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性和奇偶性的关系对不等式进行转化,注意函数值为零的自变量的取值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在长方体ABCD-A1B1C1D1中,AB=3,AD=2,CC1=1,一条绳子从点A沿表面拉到点C1,求绳子的最短的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知由一组样本数据确定的回归直线方程为y=1.5x+1,且$\overline x$=2,发现有两组数据(2.4,2.8)与(1.6,5.2)误差较大,去掉这两组数据后,重新求得回归直线的斜率为1,那么当x=4时,y的估计值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校高二年段共有10个班级,现从外地转入4名学生,要安排到该年段的两个班级且每班安排2名,则不同的安排方法共有(  )
A.540种B.270种C.180种D.90种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义集合A={x|2x≥1},B={y|y=$\sqrt{1-{x^2}}$},则A∩∁RB=(  )
A.(1,+∞)B.[0,1]C.[0,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-$\frac{a}{2}$x2+(a-1)x+lnx.
(Ⅰ)若a>-1,求函数f(x)的单调区间;
(Ⅱ)若g(x)=$\frac{a}{2}$x2+(1-2a)x+f(x)有且只有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sin(α+$\frac{π}{6}$)+cosα=$\frac{{4\sqrt{3}}}{5}$,则cos(α-$\frac{π}{6}$)的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,点M,N分别在PB,PC上,且MN∥BC.
(Ⅰ)证明:平面AMN⊥平面PBA;
(Ⅱ)若M为PB的中点,且PA=1,求点D到平面AMC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在递增的等比数列{an}中,已知a1=1,且$\frac{{a}_{3}+{a}_{4}}{{a}_{1}+{a}_{2}}$=4,则S5的值是31.

查看答案和解析>>

同步练习册答案