精英家教网 > 高中数学 > 题目详情
2.在长方体ABCD-A1B1C1D1中,AB=3,AD=2,CC1=1,一条绳子从点A沿表面拉到点C1,求绳子的最短的长.

分析 根据题意,画出三种展开的图形,求出A、C1两点间的距离,比较大小,从而找出最小值即为所求.

解答 解:①沿平面A A 11B、平面 A 1111铺展成平面,此时 AC 1=$\sqrt{{3}^{2}+(1+2)^{2}}$=3$\sqrt{2}$.

②沿平面 AA 11D、平面 A 1111铺展成平面,此时 AC 1=$\sqrt{{2}^{2}+(1+3)^{2}}$=2$\sqrt{5}$.

③沿平面 AA 11B、平面 BB 11C铺展成平面,此时 AC 1=$\sqrt{{1}^{2}+(3+2)^{2}}$=2$\sqrt{6}$.

故绳子的最短的长为3$\sqrt{2}$.

点评 本题考查棱柱的结构特征,考查分类讨论思想,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.三棱锥A-BCD中,AB=AC=DB=DC=3,BC=4,AD=$\sqrt{5}$,则二面角A-BC-D的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:PM⊥平面SAC;
(2)求二面角M-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥S-ABC中,SC⊥平面ABC,SC=3,AC⊥BC,CE=2EB=2,AC=$\frac{3}{2}$,CD=ED.
(Ⅰ)求证:DE⊥平面SCD;
(Ⅱ)求二面角A-SD-C的余弦值;
(Ⅲ)求点A到平面SCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别在线段AD、BC上,且EF⊥BC,AD=4,CB=6,AE=2,现将梯形ABCD沿EF折叠,使A到达M位置,B到达N位置,且平面MNFE⊥平面EFCD
(1)判断直线MD与 NC是否共面,用反证法证明你的结论
(2)若MC与平面EFCD所成角记为θ,那么tanθ为多少时,二面角M-DC-E的大小是60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=ex+x3-$\frac{1}{2}x$-1的图象上有且只有两点P1,P2,使得函数g(x)=x3+$\frac{m}{x}$的图象上存在两点Q1,Q2,且P1与Q1、P2与Q2分别关于坐标原点对称,则实数m的取值集合是{$\frac{1}{2}$-$\frac{1}{e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为(  )
A.20cm3B.22cm3C.24cm3D.26cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,PA垂直圆O所在的平面,C是圆O上的点,Q为PA的中点,G为△AOC的重心,AB是圆O的直径,且AB=2AC=2.
(Ⅰ)求证:QG∥平面PBC;
(Ⅱ)求G到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf'(x)+f(x)<0恒成立,则不等式xf(x)>0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

同步练习册答案