分析 (Ⅰ)求出函数的导数,求出a的值,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)问题转化为$m≤\frac{(1+x)(1+lnx)}{x}$,令$h(x)=\frac{(1+x)(1+lnx)}{x}$,根据函数的单调性求出h(x)的最小值,从而求出m的范围即可;
(Ⅲ)求出ln(n+1)-lnn<$\frac{1}{n}$,结合nf(n)=1+lnn,证出结论即可.
解答 解:(Ⅰ)由题意得$f'(x)=\frac{1-a-lnx}{x^2}$,
所以f'(1)=1-a=0即a=1,∴$f'(x)=\frac{-lnx}{x^2}$,
令f'(x)>0,可得0<x<1,令f'(x)<0,可得x>1,
所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
(Ⅱ)由题意要使x∈[1,+∞)时,$f(x)≥\frac{m}{1+x}$恒成立,
即$m≤\frac{(1+x)(1+lnx)}{x}$,
记$h(x)=\frac{(1+x)(1+lnx)}{x}$,则m≤[h(x)]min,
$h'(x)=\frac{x-lnx}{x^2}$,又令g(x)=x-lnx,
则$g'(x)=1-\frac{1}{x}$,又x≥1,所以$g'(x)=1-\frac{1}{x}≥0$,
所以g(x)在[1,+∞)上单调递增,
即g(x)≥g(1)=1>0,
∴$h'(x)=\frac{x-lnx}{x^2}>0$,
即h(x)在[1,+∞)上单调递增,
所以[h(x)]min=h(1)=2,∴m≤2.
(Ⅲ)∵函数f(x)在区间(1,+∞)上单调递减,
而$1+\frac{1}{n}>1$(n∈N*,n≥2),
∴$f(1+\frac{1}{n})<f(1)=1$,
∴$1+ln(1+\frac{1}{n})<1+\frac{1}{n}$,
即$ln(n+1)-lnn<\frac{1}{n}$,
∴$lnn=ln2-ln1+ln3-ln2+…+lnn-ln(n-1)<1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n-1}$,
即$1+lnn<2+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n-1}$,而nf(n)=1+lnn,
∴$nf(n)<2+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n-1}$结论成立.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n-1 | B. | 2n | C. | 2n+1-1 | D. | 2n+1-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [0,1] | C. | [0,1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com