精英家教网 > 高中数学 > 题目详情
1.正四棱锥S-ABCD底面边长为2,高为1,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为(  )
A.1+$\sqrt{2}$B.$\sqrt{2}$+$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

分析 根据题意可知点P的轨迹为三角形EFG,其中G、F为中点,根据中位线定理求出EF、GE、GF,从而求出轨迹的周长.

解答 解:由题意知:点P的轨迹为如图所示的三角形EFG,其中G、F为中点,
∴EF=$\frac{1}{2}$BD=$\sqrt{2}$
GE=GF=$\frac{1}{2}$SB=$\frac{\sqrt{3}}{2}$,
∴轨迹的周长为$\sqrt{2}$+$\sqrt{3}$.
故选:B.

点评 本题主要考查了轨迹问题,以及点到面的距离等有关知识,同时考查了空间想象能力,计算推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.
(1)证明:AB⊥AC;
(2)证明:DF⊥AE;
(3)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为$\frac{{\sqrt{14}}}{14}$?若存在,说明点D的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是(  )
A.$3+\sqrt{3}$B.$3+\sqrt{6}$C.$1+2\sqrt{3}$D.$1+2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)是定义在R上的恒不为0的函数,对任意实数x,y∈R,都有f(x-y)=$\frac{f(x)}{f(y)}$,已知f(1)=2,an=f(n),n∈N+,则数列{an}的前n项和Sn为(  )
A.2n-1B.2nC.2n+1-1D.2n+1-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=3|x+5|-2|x+3|,数列a1,a2,…,an…,满足an+1=f(an),n∈N*,若要使a1,a2,…an,…成等差数列.则a1的取值范围{-9}∪[-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f1(x)=$\frac{2x-1}{x+1}$,对于n∈N*,定义fn+1(x)=f1(fn(x)),则f6n+1(x)=$\frac{2x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{x^2}{2}$-alnx(a≠0).
(1)讨论f(x)的单调性和极值;
(2)证明:当a>0时,若f(x)存在零点,则f(x)在区间(1,$\sqrt{e}$]上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算x+y+z=6的正整数解有多少组?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.{an}的前n项和为Sn,且{$\frac{{S}_{n}}{n}$}为等差数列,S19=171,则a10为(  )
A.9B.10C.19D.20

查看答案和解析>>

同步练习册答案