精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足Sn2nan(n∈N*)

(1)计算a1a2a3a4,并由此猜想通项公式an

(2)用数学归纳法证明(1)中的猜想.

【答案】(1)(2)详见解析

【解析】

(1)n1时,a1S12a1∴a11.n2时,a1a2S22×2a2∴a2.

n3时,a1a2a3S32×3a3∴a3.

n4时,a1a2a3a4S42×4a4∴a4.

由此猜想(n∈N*)

(2)证明:n1时,a11,结论成立.

假设nk(k≥1k∈N*)时,结论成立,即

那么nk1(k≥1k∈N*)时,

ak1Sk1Sk2(k1)ak12kak

2akak1.∴2ak12ak2.

∴ak1,由①②可知,对n∈N*都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,,的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,AB1BC2ACPCPAPBE是线段BC的中点.

1)求点C到平面APE的距离d

2)求二面角PEAB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知ABC三个顶点坐标为A(78)B(104)C(2,-4)

(1)求BC边上的中线所在直线的方程;

(2)求BC边上的高所在直线的方程.

【答案】(1);(2)

【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.

试题解析:1)由B(104)C(2,-4)BC中点D的坐标为(60),

所以AD的斜率为k8

所以BC边上的中线AD所在直线的方程为y08(x6)

8xy480

2)由B(104)C(2,-4)BC所在直线的斜率为k1

所以BC边上的高所在直线的斜率为-1

所以BC边上的高所在直线的方程为y8=-(x7),即xy150

型】解答
束】
17

【题目】已知直线lx2y2m20

(1)求过点(23)且与直线l垂直的直线的方程;

(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:,经统计,其高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.

(1)求图中的值,并估计这批树苗的平均高度(同一组中的数据用该组区间的中点值作代表);

(2)已知所抽取的这120棵树苗来自于两个试验区,部分数据如下列联表:

试验区

试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有的把握认为优质树苗与两个试验区有关系,并说明理由.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出的结果S为(  )

A. B. C. 0D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

7

8

9

10

11

12

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14

(1)根据7至11月份的数据,求出关于的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

 参考公式:回归直线方程,其中,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F是双曲线1a0b0)的左焦点,过点F作双曲线的一条渐近线的垂线,垂足为A,交另一条渐近线于点B.若3,则此双曲线的离心率为(  )

A.2B.3C.D.

查看答案和解析>>

同步练习册答案