精英家教网 > 高中数学 > 题目详情

【题目】运行如图所示的程序框图,则输出的结果S为(  )

A. B. C. 0D.

【答案】C

【解析】

执行如图所示的程序框图,得到s的值呈周期性变化,且周期为6,进而可求解输出的结果,得到答案.

模拟执行程序框图,可知:

n=1S=0+=

满足条件n2018,执行循环,n=2S=-=0

满足条件n2018,执行循环,n=3S=0-1=-1

满足条件n2018,执行循环,n=4S=-1-=-

满足条件n2018,执行循环,n=5S=-+=-1

满足条件n2018,执行循环,n=6S=-1+1=0

满足条件n2018,执行循环,n=7S=0+=

满足条件n2018,执行循环,n=8S=-=0

观察规律可知,S的值以6为周期循环,而2018=336×6+2

所以输出S=0

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+2x2y+10和抛物线Ey22pxp0),圆C与抛物线E的准线交于MN两点,MNF的面积为p,其中FE的焦点.

1)求抛物线E的方程;

2)不过原点O的动直线l交该抛物线于AB两点,且满足OAOB,设点Q为圆C上任意一动点,求当动点Q到直线l的距离最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校随机抽取部分男生测试立定跳远,将成绩整理得到频率分布表如表,测试成绩在220厘米以上(含220厘米)的男生定为合格生,成绩在260厘米以上(含260厘米)的男生定为优良生

分组(厘米)

频数

频率

[180200

0.10

[200220

15

[220240

0.30

[240260

0.30

[260280

0.20

合计

1.00

1)求参加测试的男生中合格生的人数.

2)从参加测试的合格生中,根据表中分组情况,按分层抽样的方法抽取8名男生,再从这8名男生中抽取3名男生,记X表示3人中优良生的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面,点为棱的中点.

(Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足Sn2nan(n∈N*)

(1)计算a1a2a3a4,并由此猜想通项公式an

(2)用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 且圆心在直线

(Ⅰ)求圆的标准方程;

(Ⅱ)直线过点且与圆有两个不同的交点 ,若直线的斜率大于0,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前n项和满足

1)求数列的通项公式;

2)若nN*),求数列的前n项和;

3)是否存在实数使得恒成立,若存在,求实数的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Cab>0)的两个焦点分别为F1F2,离心率为,过F1的直线l与椭C交于MN两点,且MNF2的周长为8.

(1)求椭圆C的方程;

(2)若直线ykxb与椭圆C分别交于AB两点,且OAOB,试问点O到直线AB的距离是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}{bn}满足:a13,当n≥2时,an1+an4n;对于任意的正整数n.设{bn}的前n项和为Sn

1)求数列{an}{bn}的通项公式;

2)求满足13Sn14n的集合.

查看答案和解析>>

同步练习册答案