【题目】如图,四棱锥中,底面,,,,,点为棱的中点.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】如图所示,在底面为正方形的四棱锥P—ABCD中,AB=2,PA=4,PB=PD=,AC与BD相交于点O,E,G分别为PD,CD中点,
(1)求证:EO//平面PBC;
(2)设线段BC上点F满足BC=3BF,求三棱锥E—OFG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P为椭圆C:1(a>b>0)上一点,F1,F2分别是椭圆C的左、右两个焦点,|PF1|=2|PF2|,且cos∠F1PF2,过点F2且斜率为k的直线l与椭圆C交于A,B两点.
(1)求椭圆C的离心率;
(2)若点M(1,)在C上,求△MAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
【答案】(1);(2)
【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.
试题解析:(1)由B(10,4),C(2,-4),得BC中点D的坐标为(6,0),
所以AD的斜率为k==8,
所以BC边上的中线AD所在直线的方程为y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直线的斜率为k==1,
所以BC边上的高所在直线的斜率为-1,
所以BC边上的高所在直线的方程为y-8=-(x-7),即x+y-15=0.
【题型】解答题
【结束】
17
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+ρsinθ=1,曲线C的极坐标方程为ρsin2θ=8cosθ.
(1)求直线l与曲线C的直角坐标方程;
(2)设点M(0,1),直线l与曲线C交于不同的两点P,Q,求|MP|+|MQ|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月1日,在庆祝新中国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,壮军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升飞机以千米/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西的方向上,1分钟后第二次观测到该飞机在北偏东的方向上,仰角为,则直升机飞行的高度为________千米.(结果保留根号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的序号是( )
①“b=2”是“1,b,4成等比数列”的充要条件;
②“双曲线与椭圆有共同焦点”是真命题;
③若命题p∨¬q为假命题,则q为真命题;
④命题p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0.
A.①②B.②③④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com