精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面,点为棱的中点.

(Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】

I)取的中点,连结,通过证明四边形是平行四边形证得,由此证得平面.(II)以为原点,以分别为轴,轴,建立空间直角坐标系,通过计算平面和平面的法向量,计算出二面角的余弦值.

证明:(Ⅰ)取的中点,连结

是棱的中点,∴,且

∴四边形是平行四边形,∴

平面平面

平面

解:(Ⅱ)以为原点,以分别为轴,轴,建立如图所示的空间直角坐标系,

是平面的一个法向量,

,即,令,得

是平面的法向量,

,即,令,得

∵二面角的平面角为钝角,∴二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论的单调性;

(II)若恒成立,证明:当时,.

(III)在(II)的条件下,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在底面为正方形的四棱锥P—ABCD中,AB=2PA=4PB=PD=ACBD相交于点OEG分别为PDCD中点,

(1)求证:EO//平面PBC

(2)设线段BC上点F满足BC=3BF,求三棱锥E—OFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为椭圆C1ab0)上一点,F1F2分别是椭圆C的左、右两个焦点,|PF1|2|PF2|,且cosF1PF2,过点F2且斜率为k的直线l与椭圆C交于AB两点.

1)求椭圆C的离心率;

2)若点M1)在C上,求△MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知ABC三个顶点坐标为A(78)B(104)C(2,-4)

(1)求BC边上的中线所在直线的方程;

(2)求BC边上的高所在直线的方程.

【答案】(1);(2)

【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.

试题解析:1)由B(104)C(2,-4)BC中点D的坐标为(60),

所以AD的斜率为k8

所以BC边上的中线AD所在直线的方程为y08(x6)

8xy480

2)由B(104)C(2,-4)BC所在直线的斜率为k1

所以BC边上的高所在直线的斜率为-1

所以BC边上的高所在直线的方程为y8=-(x7),即xy150

型】解答
束】
17

【题目】已知直线lx2y2m20

(1)求过点(23)且与直线l垂直的直线的方程;

(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+ρsinθ1,曲线C的极坐标方程为ρsin2θ8cosθ

1)求直线l与曲线C的直角坐标方程;

2)设点M01),直线l与曲线C交于不同的两点PQ,求|MP|+|MQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出的结果S为(  )

A. B. C. 0D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年10月1日,在庆祝新中国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,壮军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升飞机以千米/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西的方向上,1分钟后第二次观测到该飞机在北偏东的方向上,仰角为,则直升机飞行的高度为________千米.(结果保留根号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的序号是(  )

b2”“1b4成等比数列的充要条件;

双曲线与椭圆有共同焦点是真命题;

③若命题p∨¬q为假命题,则q为真命题;

④命题pxRx2x+10的否定是:xR,使得x2x+1≤0

A.①②B.②③④C.②③D.②④

查看答案和解析>>

同步练习册答案