ÒÑÖªÅ×ÎïÏßy2=4xµÄ½¹µãΪF2£¬µãF1ÓëF2¹ØÓÚ×ø±êÔ­µã¶Ô³Æ£¬Ö±Ïßm´¹Ö±ÓÚxÖᣨ´¹×ãΪT£©£¬ÓëÅ×ÎïÏß½»ÓÚ²»Í¬µÄÁ½µãP¡¢Q£¬ÇÒ
F1P
F2Q
=-5£®
£¨¢ñ£©ÇóµãTµÄºá×ø±êx0£»
£¨¢ò£©ÈôÍÖÔ²CÒÔF1£¬F2Ϊ½¹µã£¬ÇÒF1£¬F2¼°ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£®
¢ÙÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
¢Ú¹ýµãF2×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Éè
F2A
=¦Ë
F2B
£¬Èô¦Ë¡Ê[-2£¬-1]£¬Çó|
TA
+
TB
|µÄȡֵ·¶Î§£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©ÀûÓÃ
F1P
F2Q
=-5£¬½áºÏP£¨x0£¬y0£©ÔÚÅ×ÎïÏßÉÏ£¬¼´¿ÉÇóµãTµÄºá×ø±êx0£»
£¨¢ò£©¢ÙÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬ÀûÓÃF1£¬F2¼°ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£¬¼´¿ÉÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
¢Ú·ÖÀàÌÖÂÛ£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃ
F2A
=¦Ë
F2B
£¬¿ÉµÃ¦Ë+
1
¦Ë
+2=
-4
1+2k2
£¬Çó³ökµÄ·¶Î§£¬
TA
=£¨x1-2£¬y1£©£¬
TB
=£¨x2-2£¬y2£©£¬ËùÒÔ|
TA
+
TB
|=£¨x1+x2-4£¬y1+y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬ÓÃk±íʾ£¬¼´¿ÉÇó|
TA
+
TB
|µÄȡֵ·¶Î§£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉÌâÒâµÃF2£¨1£¬0£©£¬F1£¨-1£¬0£©£¬ÉèP£¨x0£¬y0£©£¬Q£¨x0£¬-y0£©£¬
Ôò
F1P
=(x0+1£¬y0)
£¬
F2Q
=(x0-1£¬-y0)
£®
ÓÉ
F1P
F2Q
=-5
£¬
µÃx02-1-y02=-5¼´x02-y02=-4£¬¢Ù¡­£¨3·Ö£©
ÓÖP£¨x0£¬y0£©ÔÚÅ×ÎïÏßÉÏ£¬Ôòy02=4x0£¬¢Ú
ÁªÁ¢¢Ù¡¢¢ÚÒ×µÃx0=2¡­£¨5·Ö£©
£¨¢ò£©¢ÙÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬ÓÉÌâÒâµÃc=1£¬
ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬
ÓÉ
1
2
•2c•b=1
£¬½âµÃb=1¡­£¨6·Ö£©
´Ó¶øa2=b2+c2=2£¬
¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
2
+y2=1
¡­£¨7·Ö£©
¢Ú£¨1£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬¼´¦Ë=-1ʱ£¬A(1£¬
2
2
)
£¬B(1£¬-
2
2
)
£¬
ÓÖT£¨2£¬0£©£¬ËùÒÔ|
TA
+
TB
|=|(-1£¬
2
2
)+(-1£¬-
2
2
)|=2
¡­£¨8·Ö£©
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ
y=kx-k
x2
2
+y2=1
µÃ£¨1+2k2£©x2-4k2x+2k2-2=0£»
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÏÔÈ»y1¡Ù0£¬y2¡Ù0£¬ÔòÓɸùÓëϵÊýµÄ¹ØÏµ£¬
¿ÉµÃ£ºx1+x2=
4k2
1+2k2
£¬x1x2=
2k2-2
1+2k2
¡­£¨9·Ö£©
y1+y2=k(x1+x2)-2k=
-2k
1+2k2
¢Ý
y1y2=k2(x1x2-(x1+x2)+1)=
-k2
1+2k2
£¬¢Þ
ÒòΪ
F2A
=¦Ë
F2B
£¬ËùÒÔ
y1
y2
=¦Ë£¬ÇҦˣ¼0£®
½«¢Ýʽƽ·½³ýÒÔ¢ÞʽµÃ£º¦Ë+
1
¦Ë
+2=
-4
1+2k2
£®
ÓɦˡÊ[-2£¬-1£©µÃ¦Ë+
1
¦Ë
¡Ê[-
5
2
£¬-2)
¼´¦Ë+
1
¦Ë
+2¡Ê[-
1
2
£¬0)
£¬
¹Ê-
1
2
¡Ü
-4
1+2k2
£¼0
£¬½âµÃk2¡Ý
7
2
£®¡­£¨10·Ö£©
ÒòΪ
TA
=£¨x1-2£¬y1£©£¬
TB
=£¨x2-2£¬y2£©£¬ËùÒÔ
TA
+
TB
=£¨x1+x2-4£¬y1+y2£©£¬
ÓÖx1+x2-4=
-4(1+k2)
1+2k2
£¬
¹Ê|
TA
+
TB
|2=(x1+x2-4)2+(y1+y2)2=
16(1+k2)2
(1+2k2)2
+
4k2
(1+2k2)2
=
4(1+2k2)2+10(1+2k2)+2
(1+2k2)2
=4+
10
1+2k2
+
2
(1+2k2)2
¡­£¨11·Ö£©
Áît=
1
1+2k2
£¬ÒòΪk2¡Ý
7
2
ËùÒÔ0£¼
1
1+2k2
¡Ü
1
8
£¬¼´t¡Ê(0£¬
1
8
]
£¬
ËùÒÔ|
TA
+
TB
|2=2t2+10t+4=2(t+
5
2
)2-
17
2
¡Ê(4£¬
169
32
]
£®
ËùÒÔ|
TA
+
TB
|¡Ê(2£¬
13
2
8
]
¡­£¨13·Ö£©
×ÛÉÏËùÊö£º|
TA
+
TB
|¡Ê[2£¬
13
2
8
£©£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éΤ´ï¶¨Àí£¬¿¼²éСʱ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãPÊÇÓɲ»µÈʽ×é
x¡Ý0
y¡Ý0
x+y¡Ý1
ËùÈ·¶¨µÄÆ½ÃæÇøÓòÄڵ͝µã£¬QÊÇÖ±Ïß2x+y=0ÉÏÈÎÒâÒ»µã£¬OÎª×ø±êÔ­µã£¬Ôò|
OP
+
OQ
|µÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢
5
5
B¡¢
2
3
C¡¢
2
2
D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÉÓÚÎíö²ÈÕÇ÷ÑÏÖØ£¬Õþ¸®ºÅÕÙÊÐÃñ³Ë¹«½»³öÐУ®µ«¹«½»³µµÄÊýÁ¿Ì«¶à»áÔì³É×ÊÔ´µÄÀË·Ñ£¬Ì«ÉÙÓÖÄÑÒÔÂú×ã³Ë¿ÍÐèÇó£®Îª´Ë£¬Ä³Êй«½»¹«Ë¾ÔÚijվ̨µÄ60Ãûºò³µ³Ë¿ÍÖнøÐÐËæ»ú³éÑù£¬¹²³éÈ¡15È˽øÐе÷²é·´À¡£¬½«ËûÃǵĺò³µÊ±¼ä×÷ΪÑù±¾·Ö³É5×飬ÈçϱíËùʾ£¨µ¥Î»£ºmin£©£º
×é±ð ºò³µÊ±¼ä ÈËÊý
Ò» [0£¬5£© 2
¶þ [5£¬10£© 5
Èý [10£¬15£© 4
ËÄ [15£¬20£© 3
Îå [20£¬25] 1
£¨¢ñ£©¹À¼ÆÕâ60Ãû³Ë¿ÍÖкò³µÊ±¼äÉÙÓÚ10·ÖÖÓµÄÈËÊý£»
£¨¢ò£©Èô´ÓÉϱíµÚÈý¡¢ËÄ×éµÄ7ÈËÖÐÑ¡2ÈË×÷½øÒ»²½µÄÎʾíµ÷²é£¬Çó³éµ½µÄÁ½ÈËÇ¡ºÃÀ´×Ô²»Í¬×éµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
1
2
x2-£¨a+1£©x+alnx+1
£¨¢ñ£©Èôx=3ÊÇf£¨x£©µÄ¼«Öµµã£¬Çóf£¨x£©µÄ¼«´óÖµ£»
£¨¢ò£©ÇóaµÄ·¶Î§£¬Ê¹µÃf£¨x£©¡Ý1ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
16x+7
4x+4
£¬ÊýÁÐ{an}£¬{bn}Âú×ãa1£¾0£¬b1£¾0£¬an=f£¨an-1£©£¬bn=f£¨bn-1£©£¬n=2£¬3¡­
£¨¢ñ£©Èôa1=3£¬Çóa2£¬a3£»
£¨¢ò£©Çóa1µÄȡֵ·¶Î§£¬Ê¹µÃ¶ÔÈÎÒâµÄÕýÕûÊýn£¬¶¼ÓÐan+1£¾an£»
£¨¢ó£©Èôa1=3£¬b1=4£¬ÇóÖ¤£º0£¼bn-an¡Ü
1
8n-1
£¬n=1£¬2£¬3¡­

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

2014Äê2ÔÂ21ÈÕ¡¶Öй²ÖÐÑë¹ØÓÚÈ«ÃæÉ¸Ä¸ïÈô¸ÉÖØ´óÎÊÌâµÄ¾ö¶¨¡·Ã÷È·£º¼á³Ö¼Æ»®ÉúÓýµÄ»ù±¾¹ú²ß£¬Æô¶¯ÊµÊ©Ò»·½ÊǶÀÉú×ÓÅ®µÄ·ò¸¾¿ÉÉúÓýÁ½¸öº¢×ÓµÄÕþ²ß£®ÎªÁ˽âijµØÇø³ÇÕò¾ÓÃñºÍÅ©´å¾ÓÃñ¶Ô¡°µ¥¶ÀÁ½º¢¡±µÄ¿´·¨£¬Ä³Ã½ÌåÔڸõØÇøÑ¡ÔñÁË3600È˵÷²é£¬¾ÍÊÇ·ñÔ޳ɡ°µ¥¶ÀÁ½º¢¡±µÄÎÊÌ⣬µ÷²éͳ¼ÆµÄ½á¹ûÈçÏÂ±í£º
̬¶È
µ÷²éÈËȺ
ÔÞ³É ·´¶Ô ÎÞËùν
Å©´å¾ÓÃñ 2100ÈË 120ÈË yÈË
³ÇÕò¾ÓÃñ 600ÈË xÈË zÈË
ÒÑÖªÔÚÈ«ÌåÑù±¾ÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½³Ö¡°·´¶Ô¡±Ì¬¶ÈµÄÈ˵ĸÅÂÊΪ0.05£®
£¨1£©ÏÖÓ÷ֲã³éÑùµÄ·½·¨ÔÚËùÓвÎÓëµ÷²éµÄÈËÖгéÈ¡360È˽øÐÐÎʾí·Ã̸£¬ÎÊÓ¦ÔÚ³Ö¡°ÎÞËùν¡±Ì¬¶ÈµÄÈËÖгéÈ¡¶àÉÙÈË£¿
£¨2£©ÔÚ³Ö¡°·´¶Ô¡±Ì¬¶ÈµÄÈËÖУ¬Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡6ÈË£¬°´Ã¿×é3ÈË·Ö³ÉÁ½×é½øÐÐÉîÈë½»Á÷£¬ÇóµÚÒ»×éÖÐÅ©´å¾ÓÃñÈËÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕýÊýÊýÁÐ{an}ÖУ¬a1=1£¬Ç°nÏîºÍΪSn£¬¶ÔÈÎÒân¡ÊN*£¬lgSn¡¢lgn¡¢lg
1
an
³ÉµÈ²îÊýÁУ®
£¨1£©ÇóanºÍSn£»
£¨2£©Éèbn=
Sn
n £¡
£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬µ±n¡Ý2ʱ£¬Ö¤Ã÷£ºSn£¼Tn£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ƽÐÐËıßÐÎABCDÖУ¬
AB
=£¨1£¬0£©£¬
AC
=£¨2£¬2£©£¬Ôò
AD
BD
µÈÓÚ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¬ÌìÊǸÐð´«²¥µÄ¸ß·¢¼¾½Ú£¬Á¬Ðø6ÖÜÖУ¬Ã¿ÖÜ»¼²¡·¢ÉÕµÄÈËÊýÈç±íËùʾ£¬Í¼ÎªÍ³¼ÆÁùÖÜ·¢ÉÕÈËÊýµÄ³ÌÐò¿òͼ£¬ÔòͼÖÐÅжϿò£¬Ö´ÐпòÓ¦Ì¡¡¡¡£©
ÖÜ´Î 1 2 3 4 5 6
·¢ÉÕÈËÊý a1 a2 a3 a4 a5 a6
A¡¢i£¼6£»s=s+ai
B¡¢i¡Ü6£»s=s+i
C¡¢i¡Ü6£»s=s+ai
D¡¢i£¾6£»s=a1+a2+¡­+ai

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸