精英家教网 > 高中数学 > 题目详情
20.已知集合A={y|y=2x-1,x∈R},B={x|x-x2>0},则A∪B=(  )
A.(-1,+∞)B.(-1,1)C.(-1,0)D.(0,1)

分析 先分别求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={y|y=2x-1,x∈R}={y|y>-1},
B={x|x-x2>0}={x|0<x<1},
∴A∪B={y|y>-1}=(-1,+∞).
故选:A.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某射手进行一次射击,射中环数及相应的概率如下表
环数109877以下
概率0.250.30.20.15N
(1)根据上表求N的值(2)该射手射击一次射中的环数小于8环的概率
(3)该射手射击一次至少射中8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\sqrt{3}$sin xcos x+cos2x+a;则f(x)的最小正周期为π,若f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值与最小值的和为$\frac{3}{2}$,则实数a的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.知曲线C的极坐标方程为3ρsinθ+2ρcosθ=2,曲线C1:$\left\{\begin{array}{l}x=1+3cosα\\ y=2sinα\end{array}\right.(α$为参数).
(1)求曲线C,C1的普通方程;
(2)若点M在曲线C1上运动,试求出M到曲线C的距离的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设曲线y=f(x)在某点处的导数值为0,则过曲线上该点的切线(  )
A.垂直于x轴B.垂直于y轴
C.既不垂直于x轴也不垂直于y轴D.方向不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中央电视台为了调查近三年的春晚节目中各类节目的受欢迎程度,用分层抽样的方法,从2014年至2016年春晚的50个歌舞类节目,40个戏曲类节目,30个小品类节目中抽取样本进行调查,若样本中的歌舞类和戏曲类节目共有27个,则样本容量为(  )
A.36B.35C.32D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=$\frac{2x}{{x}^{2}+6}$.
(1)若f(x)>k的解集为(-∞,-6)∪(-1,+∞),求k的值;
(2)若对任意的x>0,f(x)≤t恒成立,求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={x|x≥0},B={x|(x-3)(x+1)<0},则(∁UA)∩B=(  )
A.{x|-3<x<0}B.{x|-1<x<0}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:
第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,$\left\{\begin{array}{l}{{x}_{k}={x}_{k-1}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]}\\{{y}_{k}={y}_{k-1}+T(\frac{k-1}{5})-T(\frac{k-2}{5})}\end{array}\right.$,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2008棵树种植点的坐标应为(3,401).

查看答案和解析>>

同步练习册答案