精英家教网 > 高中数学 > 题目详情
已知tan(α-
π
4
)=
1
3

(Ⅰ)求tanα的值;
(Ⅱ)求
6sinα+cosα
3sinα-2cosα
的值.
分析:(Ⅰ)已知等式利用两角和与差的正切函数公式化简,整理即可求出tanα的值;
(Ⅱ)原式分子分母除以cosα,利用同角三角函数间基本关系弦化切后,将tanα的值代入计算即可求出值.
解答:解:(Ⅰ)由tan(α-
π
4
)=
tanα-1
1+tanα
=
1
3

整理得:3tanα-3=1+tanα,
解得:tanα=2;
(Ⅱ)∵tanα=2,
∴原式=
6tanα+1
3tanα-2
=
6×2+1
3×2-2
=
13
4
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如图:△ABC中,|
AC
|=2|
AB
|
,D在线段BC上,且
DC
=2
BD
,BM是中线,用向量证明AD⊥BM.(平面几何证明不得分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=2,tanβ=
1
2

(1)求tanα的值;
(2)求
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=
1
7
,则tanα=
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=2
,则
sinα+cosα
cosα-sinα
的值=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+θ)=3
,则sin2θ-2cos2θ+1的值为
1
5
1
5

查看答案和解析>>

同步练习册答案