精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=-x2+1,g(x)=f[f(x)],是否存在实数p<0,使得函数F(x)=pg(x)+f(x)在(-3,0)上单调递增,且在(-∞,-3]上单调递减?若存在,求出p的值,若不存在,请说明理由.

分析 函数F(x)=pg(x)+f(x)=-px4+(2p-1)x2+1,若满足条件,则F′(-3)=0,求出p值,验证后可得结论.

解答 解:存在p=$-\frac{1}{17}$满足条件,理由如下:
∵函数f(x)=-x2+1,
∴g(x)=f[f(x)]=-(-x2+1)2+1=-x4+2x2
∴函数F(x)=pg(x)+f(x)=-px4+(2p-1)x2+1,
则F′(x)=-4px3+2(2p-1)x,
若函数F(x)在(-3,0)上单调递增,且在(-∞,-3]上单调递减,
则F′(-3)=96p+6=0,解得:p=-$\frac{1}{16}$,
此时F′(x)=$\frac{1}{4}$x(x+3)(x-3),
当x∈(-∞,-3]时,F′(x)≤0,函数F(x)为减函数,
当x∈(-3,0)时,F′(x)>0,函数F(x)为增函数,满足条件;
故存在p=-$\frac{1}{16}$满足条件.

点评 本题考察了函数的单调性,导数的应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.点P(x0,y0)是圆C:x2+y2=1上的一个动点,过点P的直线l与圆C相切
(1)求证:直线l的方程为x0x+y0y=1;
(2)若直线l与x轴、y轴的交点分别为点A、B,且|PB|,|PA|,|AB|成等比数列,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=k-$\frac{2}{{2}^{x}+1}$,k∈R.
(1)是否存在实数k使得函数f(x)为奇函数?若存在,求出实数k;若不存在,请说明理由;
(2)判断函数f(x)的单调性,并证明你的判断;
(3)当k=1时,若不等式f(t2-2t)+f(2t2-m)>0对于t∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x-$\frac{1}{x}$-alnx.
(1)若曲线y=f(x)在点(1,f(1))处的切线与圆x2+y2=$\frac{1}{2}$,求a的值;
(2)当a∈[0,2]时,函数g(x)=x-lnx-$\frac{1}{e}$,若在[1,e]上至少存在一根x0,使得f(x0)≥g(x0),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按表分段累计计算:
级数全月应纳税所得额税率
1不超过500元的部分5%
2超过500元至2000元的部分10%
3超过2000元至5000元的部分15%
(1)请写出月工资、薪金的个人所得税y关于月工资、薪金收入x(0<x≤5000)的函数表达式;
(2)某人一月份应交纳税此项税款为26.78元,那么他当月的工资,薪金所得是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在R上的任意一个函数,请以f(x)和f(-x)为基础构造函数F(x):
(1)使F(x)为偶函数;
(2)使F(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题α:|a-1|<2,β:方程x2+(a+2)x+1=0没有正根,求实数a的取值范围,可得命题α,β有且只有一个是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线y=kx+1与曲线mx2+5y2-5m=0(m>0)恒有公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)sin420°•cos750°+sin(-330°)•cos(-660°);
(2)tan675°+tan765°-tan(-330°)+tan(-690°);
(3)sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$).

查看答案和解析>>

同步练习册答案