精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥底面,底面为等腰梯形,,点E边上的点,.

1)求证:平面

2)若,求点E到平面的距离 .

【答案】1)证明见解析(2

【解析】

(1)上取一点,使得,推出,则四边形为平行四边形,从而,进而得到平面;

(2)(1),平面,故点到平面的距离与点到平面的距离相等,设点到平面的距离为d,,即可解出.

(1)证明:如图,上取一点,使得,

,,

,可得,

,可得,

,,

,

四边形为平行四边形,

,

平面,平面,

平面;

(2)(1),平面,

故点到平面的距离与点到平面的距离相等,

设点到平面的距离为d,

过点于点,

可得,

故在,,

,,

,

平面,平面,

,

平面,平面,,

平面,

,,

,

,解得,

故点E到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex-x2+axR,曲线y=fx)在(0,f(0))处的切线方程为y=bx

(1)求fx)的解析式;

(2)当xR时,求证:fx)≥-x2+x

(3)若fx)≥kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.

(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取8人,再从这8名学生中随机抽取3人参加体育知识问卷调查,记“课外体育不达标”的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量与向量的夹角为,且.

(1)求向量

(2)设向量,向量,其中,若,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的最小值;

(2)当时,求证方程在区间上有唯一实数根;

(3)当时,设函数两个不同的极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,Fx轴正半轴上的一个动点.以F为焦点、O为顶点作抛物线C.设P为第一象限内抛物线C上的一点,Qx轴负半轴上一点,使得PQ为抛物线C的切线,且.C1、C2均与直线OP切于点P,且均与x轴相切.求点F的坐标,使圆C1C2的面积之和取到最小值,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,其中.

(Ⅰ) 判断函数上的单调性;

(Ⅱ) 设函数的定义域为,且有极值点.

(ⅰ) 试判断当时, 是否满足题目的条件,并说明理由;

(ⅱ) 设函数的极小值点为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点,圆

(1)求过点的圆的切线方程;

(2)求过点的圆的切线方程.

查看答案和解析>>

同步练习册答案