【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一个解.
(1)求实数a的值及函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间;
(3)若关于x的方程f(x)=b在区间(0, )上恰有三个不相等的实数根x1 , x2 , x3 , 直接写出实数b的取值范围及x1+x2+x3的取值范围(不需要给出解题过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2bx,g(x)=|x﹣1|,若对任意x1 , x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O点为△ABC所在平面内一点,且满足 +2 +3 = ,现将一粒质点随机撒在△ABC内,若质点落在△AOC的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数中,表示同一个函数的是( )
A.f(x)=x2和f(x)=(x+1)2
B.f(x)= 和f(x)=
C.f(x)=logax2和f(x)=2logax
D.f(x)=x﹣1和f(x)=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数 是奇函数.
(1)求实数a,b的值;
(2)判断f(x)在(﹣∞,+∞)上的单调性;
(3)若f(k3x)+f(3x﹣9x+2)>0对任意x≥1恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,记f1(x)=f(f(x)),f2(x)=f(f1(x)),…,fn+1(x)=f(fn(x)),n∈N* , 那么下列说法正确的是( )
A.f(x)的图象关于点(﹣1,1)对称,f2016(0)=0
B.f(x)的图象关于点(﹣1,﹣1)对称,f2016(0)=0
C.f(x)的图象关于点(﹣1,1)对称,f2016(0)=1
D.f(x)的图象关于点(﹣1,﹣1)对称,f2016(0)=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2x﹣t(t为常数)有两个零点,g(x)= .
(1)求g(x)的值域(用t表示);
(2)当t变化时,平行于x轴的一条直线与y=|f(x)|的图象恰有三个交点,该直线与y=g(x)的图象的交点横坐标的取值集合为M,求M.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的右焦点为F2(1,0),点P(1, )在椭圆C上.
(1)求椭圆C的方程;
(2)过坐标原点O的两条直线EF,MN分别与椭圆C交于E,F,M,N四点,且直线OE,OM的斜率之积为﹣ ,求证:四边形EMFN的面积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com