精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)的右焦点为F2(1,0),点P(1, )在椭圆C上.
(1)求椭圆C的方程;
(2)过坐标原点O的两条直线EF,MN分别与椭圆C交于E,F,M,N四点,且直线OE,OM的斜率之积为﹣ ,求证:四边形EMFN的面积为定值.

【答案】
(1)解:∵为点 在椭圆C上,椭圆C的右焦点为F2(1,0),

,解得

∴椭圆C的方程为


(2)解:当直线EM斜率存在时,设直线方程为l:y=kx+m,E(x1,y1),M(x2,y2),

联立 得(1+2k2)x2+4kmx+2m2﹣2=0,

=

,即2m2=2k2+1,

原点到直线EM的距离为

= =

=

=

当直线EM斜率不存在时, ,x1=x2,y1=﹣y2,∴

,解得 ,


【解析】(1)由题意可得: ,解出即可得出.(2)当直线EM斜率存在时,设直线方程为l:y=kx+m,E(x1 , y1),M(x2 , y2),与椭圆方程联立得(1+2k2)x2+4kmx+2m2﹣2=0,利用斜率计算公式、根与系数的关系及其 ,可得2m2=2k2+1,原点到直线EM的距离为 ,利用 ,代入化简即可得出定值,斜率不存在时也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设连续掷两次骰子得到的点数分别为m、n,令平面向量
(1)求使得事件“ ”发生的概率;
(2)求使得事件“ ”发生的概率;
(3)使得事件“直线 与圆(x﹣3)2+y2=1相交”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的定义域和值域:
(1)y=3
(2)y=
(3)y=log2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表中给出了2011年~2015年某市快递业务总量的统计数据(单位:百万件)

年份

2011

2012

2013

2014

2015

年份代码

1

2

3

4

5

快递业务总量

34

55

71

85

105


(1)在图中画出所给数据的折线图;

(2)建立一个该市快递量y关于年份代码x的线性回归模型;
(3)利用(2)所得的模型,预测该市2016年的快递业务总量.
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
斜率: ,纵截距:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是(
A.奇函数,且在(0,1)上是增函数
B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数
D.偶函数,且在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 是定义在(﹣1,1)上的奇函数,且
(1)确定函数的解析式;
(2)证明函数f(x)在(﹣1,1)上是增函数;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数满足,则称为函数的不动点.

(1)求函数的不动点;

(2)设函数,其中为实数.

① 若时,存在一个实数,使得既是的不动点,又是 的不动点(是函数的导函数),求实数的取值范围;

② 令,若存在实数,使 成各项都为正数的等比数列,求证:函数存在不动点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F(0,1),直线l:y=﹣1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1 , |DB|=l2 , 求 的最大值.

查看答案和解析>>

同步练习册答案