(本题满分10分)
如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
(1) (2)
解析试题分析:解:(I)以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系.
则有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).
所以,cos<>. ……………………3分
由于异面直线BE与AC所成的角是锐角,
所以,异面直线BE与AC所成角的余弦值是. ……………………5分
(II),,
设平面ABE的法向量为,
则由,,得,
取,
又因为
所以平面BEC的一个法向量为n2=(0,0,1),
所以. ……………………8分
由于二面角A-BE-C的平面角是n1与n2的夹角的补角,
所以,二面角A-BE-C的余弦值是.……………………10分
考点:本试题考查了异面直线的角和二面角的求解。
点评:对于角的求解问题,一般分为三步进行,一作,二证,三解答。因此要掌握角的表示,结合定义法和性质来分析得到角,进而求解,属于基础题。
科目:高中数学 来源: 题型:解答题
如图所示在四棱锥P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,△PAB为等边三角形。(12分)
(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分别是的中点。
(1)证明:平面平面;
(2)证明:平面ABE;
(3)设P是BE的中点,求三棱锥的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,矩形所在平面与平面垂直,,且,为上的动点.
(Ⅰ)当为的中点时,求证:;
(Ⅱ)若,在线段上是否存在点E,使得二面角的大小为. 若存在,确定点E的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com