精英家教网 > 高中数学 > 题目详情

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

(1)先证明平面 ,然后利用面面垂直的判定定理得到证明。
(2)

解析试题分析:证明:(Ⅰ)作平面于点,∵
,即的外心
又∵中,
边的中点
所以平面
即证:平面平面.              .......6分
(Ⅱ)∵,∴为正三角形
 ,  ∴

∴三棱锥的体积
.………….12分
考点:本试题主要是考查了面面垂直以及棱锥的体积的求解。
点评:解决该试题的关键是能利用面面垂直的判定定理和等体积法来分别求解得到。同时也可以建立空间直角坐标系来证明垂直问题,通过法向量垂直来说明面面垂直,同时利用向量可以求点到面的距离,进而得到体积的运算。属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知直三棱柱中,△为等腰直角三角形,∠ =,且分别为的中点.

(1)求证:∥平面
(2)求证:⊥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,已知三棱锥OABC的侧棱OAOBOC两两垂直,且OA=2,OB=3,OC=4,EOC的中点.

(1)求异面直线BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)三棱柱中,侧棱底面

(1)求异面直线所成角的余弦值;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,斜三棱柱中,侧面底面ABC,侧面是菱形,EF分别是AB的中点.

求证:(1)EF∥平面
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

图1,平面四边形关于直线对称,.把沿折起(如图2),使二面角的余弦值等于

对于图二,完成以下各小题:
(Ⅰ)求两点间的距离;
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面,点分别在棱上,且 

(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中点.

(1)求证:C1DAB1 ;
(2)当点FBB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案