精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,斜三棱柱中,侧面底面ABC,侧面是菱形,EF分别是AB的中点.

求证:(1)EF∥平面
(2)平面CEF⊥平面ABC

证明:取BC中点M,连结FM,.在△ABC中,因为F,M分别为BABC的中点,所以FM AC.因为E的中点,AC,所以FM .从而四边形为平行四边形,所以.所以EF∥平面. (2) 在平面内,作O为垂足。因为∠,所以,从而OAC的中点. 所以,因而.因为侧面⊥底面ABC,交线为AC,所以底面ABC.所以底面ABC.又因为平面EFC, 所以平面CEF⊥平面ABC

解析
试题分析:证明:(1)取BC中点M,连结FM,
在△ABC中,因为F,M分别为BABC的中点,
所以FM AC.                        ………………………………2分
因为E的中点,AC,所以FM .  
从而四边形为平行四边形,所以.……………………4分
又因为平面平面
所以EF∥平面.…………………6分  
(2) 在平面内,作O为垂足. 
因为∠,所以
从而OAC的中点.……8分   
所以,因而.      …………………10分
因为侧面⊥底面ABC,交线为AC,所以底面ABC
所以底面ABC.             …………………………………………12分
又因为平面EFC,所以平面CEF⊥平面ABC.………………14分
考点:本题考查了空间中的线面关系
点评:证明立体几何问题常常利用几何方法,通过证明或找到线面之间的关系,依据判定定理或性质进行证明求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,

(1)求证:平面A B1D1∥平面EFG;
(2)求证:平面AA1C⊥面EFG.
(3)求异面直线AC与A1B所成的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,已知六棱锥的底面是正六边形,平面的中点。

(Ⅰ)求证:平面//平面
(Ⅱ)设,当二面角的大小为时,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,在四棱锥中,的中点.

求证:(1)∥平面
(2)⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1丄底面ABC.

(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面 ABC所成的角为60°.问在线段A1C1上是否存在一点P,使得平面B1CP丄平面ACC1A1,若存在,求C1P与PA1的比值,若不存在,说明 理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=

(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

同步练习册答案