精英家教网 > 高中数学 > 题目详情

(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

(Ⅰ)取AB的中点M,连结GM,MC,G为BF的中点……;(Ⅱ)=.

解析试题分析:(Ⅰ)取AB的中点M,连结GM,MC,G为BF的中点,

所以GM //FA,又EC面ABCD, FA面ABCD,
∵CE//AF,
∴CE//GM,………………2分
∵面CEGM面ABCD=CM,
EG// 面ABCD,
∴EG//CM,………………4分
∵在正三角形ABC中,CMAB,又AFCM
∴EGAB, EGAF,
∴EG面ABF.…………………6分
(Ⅱ)建立如图所示的坐标系,设AB=2,
则B()E(0,1,1) F(0,-1,2)

=(0,-2,1) , =(,-1,-1),   =(,1, 1),………………8分
设平面BEF的法向量=()则
     令,则,
=()…………………10分
同理,可求平面DEF的法向量  =(-
设所求二面角的平面角为,则
=.…………………12分
考点:本题主要考查立体几何中线面垂直及角的计算,空间向量的应用
点评:典型题,立体几何中平行、垂直关系的证明及角的计算问题是高考中的必考题,通过建立适当的坐标系,可使问题简化。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,斜三棱柱中,侧面底面ABC,侧面是菱形,EF分别是AB的中点.

求证:(1)EF∥平面
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图所示,在三棱柱中,点为棱的中点.

(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图所示,四棱锥中,底面为正方形,平面分别为的中点.

(1)求证:
(2)求平面EFG与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为10分)
在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M;RQ,DB的延长线交于N;RP,DC的延长线交于K,求证:M、N、K三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图几何体,是矩形,
上的点,且

(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面,点的中点,中点.

(1)求证:平面⊥平面
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.

查看答案和解析>>

同步练习册答案