如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .
(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .
科目:高中数学 来源: 题型:解答题
如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=.
(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分6分)
如图,在边长为的菱形中,,面,,、分别是和的中点.
(1)求证: 面;
(2)求证:平面⊥平面;
(3)求与平面所成的角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE∶ED=λ,使得二面角C-AN-E的平面角为60o.存在求出λ值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.
(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com