精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

(1)  6分
(2)  当中点时,平面
 推出 ,证得, 从而平面

解析试题分析:(1)  6分
(2)  当中点时,平面
理由如下:设,交于点
因为  ,所以
所以 , 从而平面      6分
考点:本题主要考查立体几何中的垂直、平行关系。
点评:基础题,立体几何中的垂直、平行关系,是高考考查的基本问题,熟悉定理是关键,同时,要注意空间问题与平面问题的相互转化。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,已知六棱锥的底面是正六边形,平面的中点。

(Ⅰ)求证:平面//平面
(Ⅱ)设,当二面角的大小为时,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=

(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE∶ED=λ,使得二面角C-AN-E的平面角为60o.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,

(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图4,已知四棱锥,底面是正方形,,点的中点,点的中点,连接,.

(1)求证:
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在四棱锥中,平面,,,
.
(Ⅰ)证明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱上的点,满足异面直线所成的角为,求的长.
 

查看答案和解析>>

同步练习册答案