(本小题满分6分)
如图,在边长为
的菱形
中,
,
面
,
,
、
分别是
和
的中点.![]()
(1)求证:
面
;
(2)求证:平面
⊥平面
;
(3)求
与平面
所成的角的正切值.
科目:高中数学 来源: 题型:解答题
如图所示,等腰△ABC的底边AB=6
,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记
,用
表示四棱锥P-ACFE的体积.![]()
(Ⅰ)求
的表达式;
(Ⅱ)当x为何值时,
取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,斜三棱柱
中,侧面![]()
底面ABC,侧面
是菱形,
,E、F分别是
、AB的中点.![]()
求证:(1)EF∥平面
;
(2)平面CEF⊥平面ABC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱锥
中,
底面
,点
,
分别在棱
上,且
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)当
为
的中点时,求
与平面
所成的角的正弦值;
(Ⅲ)是否存在点
使得二面角
为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=
,D是A1B1中点.![]()
(1)求证:C1D⊥AB1 ;
(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥
中,底面
是边长为
的正方形,
,且
点满足
. ![]()
(1)证明:
平面
.
(2)在线段
上是否存在点
,使得
平面
?若存在,确定点
的位置,若不存在请说明理由 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com