精英家教网 > 高中数学 > 题目详情

如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=

(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面

(1)先证,再证,根据线面垂直的判定定理可证结论
(2)(3)当时,
或建立空间直角坐标系可以用空间向量解决

解析试题分析:方法一:(1)因为
所以为等腰直角三角形,所以. 
因为是一个长方体,所以
,所以,所以
因为垂直于平面内的两条相交直线
由线面垂直的判定定理,可得

(2)过点在平面,连接
因为,所以
所以就是与平面所成的角.
因为,所以.    
所以与平面所成的角的正切值为.          
(3)当时,.           
时,四边形是一个正方形,所以
,所以,所以. 
在同一个平面内,所以. 
,所以,所以
方法二:(1)证明:如图建立空间直角坐标系,设棱长
则有.                            
于是
所以
所以垂直于平面内的两条相交直线
由线面垂直的判定定理,可得.   

(2)解:,所以,而平面的一个法向量为
所以.所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)如图,在六面体中,.

求证:(1);(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,斜三棱柱中,侧面底面ABC,侧面是菱形,EF分别是AB的中点.

求证:(1)EF∥平面
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在直三棱柱(侧棱垂直底面)中,,且异面直线所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面,点分别在棱上,且 

(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平行四边形中,,,将沿折起,使

(1)求证:平面; 
(2)求平面和平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为10分)
在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M;RQ,DB的延长线交于N;RP,DC的延长线交于K,求证:M、N、K三点共线.

查看答案和解析>>

同步练习册答案