精英家教网 > 高中数学 > 题目详情

(本题满分为10分)
在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M;RQ,DB的延长线交于N;RP,DC的延长线交于K,求证:M、N、K三点共线.

证明:M、N、K都同时在面ABC和面PQR内,所以在两面的交线上,所以三点共线

解析试题分析:由已知得,所以N在面ABC和面PQR内;
同理K在面ABC和面PQR内;M在面ABC和面PQR内。
所以M、N、K应在面ABC和面PQR的交线上,即证得
M、N、K三点共线
考点:利用公理3证明三点共线
点评:公理3还可证明三线共点,做两面交线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=

(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图4,已知四棱锥,底面是正方形,,点的中点,点的中点,连接,.

(1)求证:
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且
 
(Ⅰ)求证:平面平面
(Ⅱ)为线段上的一个动点,当线段的长为多少时,与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,四棱锥中,为正方形, 分别是线段的中点. 求证:
(1)//平面 ; 
(2)平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在四棱锥中,平面,,,
.
(Ⅰ)证明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱上的点,满足异面直线所成的角为,求的长.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.

查看答案和解析>>

同步练习册答案