(本题满分为10分)
在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M;RQ,DB的延长线交于N;RP,DC的延长线交于K,求证:M、N、K三点共线.
科目:高中数学 来源: 题型:解答题
如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=.
(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.
(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且.
(Ⅰ)求证:平面平面;
(Ⅱ)为线段上的一个动点,当线段的长为多少时,与平面所成的角为?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.
(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com