精英家教网 > 高中数学 > 题目详情

如图,为圆的直径,点在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,

(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为

(Ⅰ)平面平面,平面
平面平面平面(II)(Ⅲ)

解析试题分析:(I)证明:平面平面,,
平面平面=
平面
平面
为圆的直径,
平面.            
平面平面平面………4分
(II)根据(Ⅰ)的证明,有平面
在平面内的射影,
因此,为直线与平面所成的角  ……………6分
四边形为等腰梯形,
过点,交
,,则
中,根据射影定理,得

直线与平面所成角的大小为.       …………8分
(Ⅲ)设中点为,以为坐标原点,方向分别为轴、轴、 轴方向建立空间直角坐标系(如图).设,则点的坐标为则 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,已知三棱锥OABC的侧棱OAOBOC两两垂直,且OA=2,OB=3,OC=4,EOC的中点.

(1)求异面直线BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面,点分别在棱上,且 

(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中点.

(1)求证:C1DAB1 ;
(2)当点FBB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,平面,的中点.

(1)求证:∥平面
(2)求二面角的余弦值;
(3)设的中点为,问:在矩形内是否存在点,使得平面.若存在,求出点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图所示,在三棱柱中,点为棱的中点.

(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=.
(1)求证:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值

查看答案和解析>>

同步练习册答案