精英家教网 > 高中数学 > 题目详情

如图,三棱柱中,平面,的中点.

(1)求证:∥平面
(2)求二面角的余弦值;
(3)设的中点为,问:在矩形内是否存在点,使得平面.若存在,求出点的位置,若不存在,说明理由.

(1) 只需证;(2) ;(3)

解析试题分析:(1)连结,设,连结,在中,中点,
 中点,∴,又∵
∥面.      4分
(2)过且设,连结,∵,∴.又,∴,∴,∴为二面角的平面角,设为.      5分
中,,由可得
,即二面角的余弦值为.     8分
(3)以为坐标原点,轴,轴,轴建立空间直角坐标系.
依题意,得:,假设存在

平面,得:
 ∴
同理,由得:
即:在矩形内是存在点,使得平面.此时点的距离为,到的距离为.      13分 
考点:线面垂直的判定定理;线面平行的判定定理;二面角。
点评:立体几何中证明线面平行或面面平行都可转化为“线线平行”,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行,等等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面是正方形.已知.

(Ⅰ)求证:
(Ⅱ)求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,

(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是直角梯形,,∠,平面⊥平面.

(1)求证:⊥平面
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,

(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.

(1)求的长; (2)求cos< >的值;  (3)求证:A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在上,过点//的位置(),
使得.

(I)求证:  (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四边形均为菱形, ,且

(Ⅰ)求证:平面
(Ⅱ)求证:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在侧棱垂直于底面的三棱柱中,
的中点。

(1)求证:
(2)求与平面所成的角的正切值

查看答案和解析>>

同步练习册答案