如图,三棱柱中,平面,,,为的中点.
(1)求证:∥平面;
(2)求二面角的余弦值;
(3)设的中点为,问:在矩形内是否存在点,使得平面.若存在,求出点的位置,若不存在,说明理由.
(1) 只需证∥;(2) ;(3)
解析试题分析:(1)连结,设,连结,在中,为中点,
为 中点,∴∥,又∵面,面,
∴∥面. 4分
(2)过作且设,连结,∵面,面,∴.又,∴面,∴,∴为二面角的平面角,设为. 5分
在中,,由可得,
∴,即二面角的余弦值为. 8分
(3)以为坐标原点,为轴,为轴,为轴建立空间直角坐标系.
依题意,得:、、、,假设存在
,,
由平面,得:
∴
同理,由得:
即:在矩形内是存在点,使得平面.此时点到的距离为,到的距离为. 13分
考点:线面垂直的判定定理;线面平行的判定定理;二面角。
点评:立体几何中证明线面平行或面面平行都可转化为“线线平行”,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行,等等。
科目:高中数学 来源: 题型:解答题
如图,在五面体ABCDEF中,,,,
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥中,底面是直角梯形,∥,∠, ,平面⊥平面.
(1)求证:⊥平面;
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长; (2)求cos< >的值; (3)求证:A1B⊥C1M.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,在点上,过点做//将的位置(),
使得.
(I)求证: (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com