精英家教网 > 高中数学 > 题目详情

图1,平面四边形关于直线对称,.把沿折起(如图2),使二面角的余弦值等于

对于图二,完成以下各小题:
(Ⅰ)求两点间的距离;
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

(Ⅰ)。                                                                                                                
(Ⅱ)由已知得,推出, 
,得到平面
(Ⅲ)

解析试题分析:(Ⅰ)取的中点 ,连接 ,
,得:  
就是二面角的平面角,即           2分
中,解得,又
,解得。        4分                                                                                                                   
(Ⅱ)由
,∴, 
,  又,∴平面.     8分
(Ⅲ)方法一:由(Ⅰ)知平面平面
∴平面平面,平面平面
,则平面
就是与平面所成的角。             11分
.       13分
方法二:设点到平面的距离为
 ,
∴  ,           11分
于是与平面所成角的正弦为.         13分
方法三:以所在直线分别为轴,轴和轴建立空间直角坐标系
. 
设平面的法向量为,则

,则,    &

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在三棱锥DABC中,已知△BCD是正三角形,AB⊥平面BCDABBCaEBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面是正方形.已知.

(Ⅰ)求证:
(Ⅱ)求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。

(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,边上的高,,沿翻折,使得,得到几何体

(1)求证:
(2)求与平面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,

(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是直角梯形,,∠,平面⊥平面.

(1)求证:⊥平面
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四边形均为菱形, ,且

(Ⅰ)求证:平面
(Ⅱ)求证:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

同步练习册答案