图1,平面四边形
关于直线
对称,
,
,
.把
沿
折起(如图2),使二面角
的余弦值等于
.![]()
对于图二,完成以下各小题:
(Ⅰ)求
两点间的距离;
(Ⅱ)证明:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.![]()
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。![]()
(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在五面体ABCDEF中,
,
,
,![]()
![]()
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为
?若存在,试确定点M的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥
中,底面
是直角梯形,
∥
,∠
,
,平面
⊥平面
.![]()
(1)求证:
⊥平面
;
(2)求平面
和平面
所成二面角(小于
)的大小;
(3)在棱
上是否存在点
使得
∥平面
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com